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Abstract 

In June of 2015, 27,378 of the 28,000 returning Operation Iraqi 

Freedom/Operation Enduring Freedom (OIF/OEF) veterans report being exposed to burn 

pits.  According to Barth et al. (2014), 9,660 returning OIF/OEF veterans were diagnosed 

with respiratory diseases, to include asthma, bronchitis, and sinusitis, thus strengthening 

the need to develop decision support tools that can be used to understand the relationships 

between chemical exposure and disease.  In this study an Artificial Neural Network 

(ANN) was used to predict the chemical-disease associations for burn pit constituents.  

Ten burn pit constituents were tested using varying hidden layers, similar chemical 

structure relationships, and three Training, Validation, and Testing (TVT) ratios.  The 

ANN predicted misidentification rates of 73% or greater when the hidden layer size 

varied between 1 and 5.  Misidentification rates of 75% or greater were observed for 

ANN simulations when the TVT ratios ranged from 60/20/20 to 80/10/10.  ANN-based 

screening of chemical groups containing chemicals with benzene rings and chemicals 

containing hydrocarbon chains produced misidentification rates of 73% or greater, and R2 

values of 0.0762 and lower.  Hidden Layer size, TVT ratios, and chemical structure had 

little effect on the model’s performance; additional training data is needed to improve the 

predictive capability of the ANN.  The ANN-based screening of individual burn pit 

constituents produced several chemicals with R2 values greater than 0.8.  These 

chemicals have been prioritized to further develop predictive ANN models for human 

health force support, resulting in the first research screening burn pit constituents with an 

ANN, and the first to prioritize burn pit emissions for future testing. 
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USING ARTIFICIAL NEURAL NETWORKS TO PREDICT DISEASE 

ASSOCIATIONS FOR CHEMICALS PRESENT IN BURN PIT EMISSIONS 

  

I.  Introduction 

1. General Issue 

The risks associated with industrial use chemicals are reduced as a result of the 

performance of risk assessments.  Establishing risk associated with a chemical 

involves the identification of the hazard, a hazard assessment, an exposure 

assessment, and basic characterization of the risk, resulting in the generation of 

effects caused by chemical exposure.  According to the American Chemical Society 

(ACS), chemical risk assessments cannot be accomplished using a single set of 

analytical tests.  Instead, a chemical risk assessment should involve a process for 

selecting the most appropriate method to evaluate the impacts associated with the life 

cycle exposure to a chemical (ACS, 2015).   

Due to the evolving nature of the military-related missions overseas, risk 

assessments are often performed post-hoc.  The highly publicized post-hoc burn pit 

assessments have sparked a need for military chemical risk assessment reform.  As a 

result of the risk assessment reform, this thesis will explore the diseases that are 

linked to the constituents present in burn pit emissions.  The research involved in this 

thesis focused on studying the relationship between chemicals and disease, burn pit 

emission constituents, and the use of an Artificial Neural Network (ANN) to predict 

chemical-disease associations among burn pit constituents.    
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a. The relationship between chemicals and disease 

i. Etiology 

The etiology of disease has many facets.  One facet involves 

studying gene-environment interactions that mediate, change, or alter 

gene function (Liu et al., 2008).  Environmental exposure to 

chemicals may influence biological system interaction.  By studying 

chemical-biological system interaction insight may be provided into 

a chemical’s mechanism of action, potential toxicity, and individual 

disease susceptibility.   

ii. Mechanism of Action and Biomarkers 

In pharmacology, the term Mechanism of Action (MOA) is 

referred to as the specific biochemical interaction in which a 

substance produces an effect or biomarker.  Characterizing a 

chemical mechanism of action will allow for the identification of the 

chemical biomarkers (Heinzel et al., 2014).  A biomarker is a 

measurable cellular, biochemical, or molecular alteration in human 

tissues, cells, or fluids that are indicative of biological processes, 

biological responses, or conditions (Mayeux, 2004).  There are 

various types of biomarkers: genomic, transcriptomic proteomic, and 

metabolomic, which can be used as prognostic, predictive, or 

pharmacodynamic indicator.  By studying biomarkers, and the 
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body’s biological indicator of exposure, scientists are able to link 

chemical exposure to predictive health outcomes.  

iii. Epigenetics 

According to Liu et al. (2008), gene-environment interaction gives 

rise to epigenetic changes of the genome in response to a change in 

the environment.  The gene-environment interaction may result in 

the alteration of gene operation, the formation of disease, and/or 

gene mutation. 

iv. Chemical Structure 

Chemical bonding results in a substance having unique physical 

and chemical properties.  The number and type of chemical bonds 

determines the compound’s structure, connectivity, and geometry.  

These unique properties have the ability to influence biological 

activity, specifically the toxicity of a compound (Vouk et al., 1987).  

Structure-activity relationships (SARs) have been used to describe a 

chemical’s ability to induce adverse health effects (Vouk et al., 

1987). 

b. Burn Pits 

Proper disposal of waste during in Afghanistan and Iraq have been 

essential in preventing unsanitary conditions and health hazards.  When 

sanitary and waste management facilities are unavailable, military forces have 

relied on waste burning in the form of open-air burn pits as a method to 

reduce the volume of waste.  Air emissions from open-air burn pits release 
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pollutants such as dioxins, particle matter (PM), polycyclic aromatic 

hydrocarbons (PAHs), and volatile organic compounds (VOCs) directly into 

the atmosphere (EPA, 2002).  Current research conducted by the United States 

(US) Environmental Protection Agency (EPA) has found an increased risk of 

heart disease, asthma, and emphysema associated with the inhalation of air 

emissions from burning trash.  In contrast, the health risks associated with 

military-related burn pit exposures have not been thoroughly assessed.     

In response to service member concerns, an environmental health risk 

assessment was accomplished in 2007 in an attempt to characterize burn pit 

emissions.  Initial screening samples, risk assessment models, and airborne 

concentration calculations performed were reported to the Department of 

Defense (DOD) Defense Health Board (DHB).  The composite risk estimate 

performed compared burn pit air sampling result values to the one-year 

military exposure guidelines (MEGs), evaluated the severity of health risks, 

along with the probability and frequency of the exposure occurring.  The risk 

estimate determined that exposures to volatile organic compounds (VOCs), 

polycyclic aromatics hydrocarbons (PAHs), dioxins, and furans were 

considered low (Weese, 2010).  The health risk assessment rating of “low” 

was provided to commanders and the DHB in 2007.   

The DHB determined that several problems existed with risk assessment, 

to include the infrequency of detection and sampling of burn pit emissions.   

Furthermore, the data presented to the DHB from Joint Base Balad (JBB) Iraq 

burn pit sampling employed quantitative screening using the Human Health 
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Risk Assessment Guidance for Superfund methodology outlined by the EPA.  

The EPA Methodology compared values designed for long-term exposure 

scenarios regarding a general population that included children and the 

elderly.  Service member cancer risks were also estimated using theoretical or 

probabilistic cancer risk estimates and the service member’s time on the base.  

The time periods used in the risk estimate included 24-hour days, seven days 

per week for twelve-month, four-month, and one-month exposure increments.  

The EPA method determined that both non-cancer and cancer risks were 

acceptable and considered safe per EPA classification (Weese, 2010).  

According to the DHB, the report offered limited data examination and 

information on the potential effects of burn pit combustion exposures.   

Neither the amount, nor the type of material disposed of in the burn pits, was 

well controlled, defined, or characterized—thus resulting in the DHB 

believing that the burn pit emissions were not fully characterized.  Fearing 

that burn pit combustion products pose an inhalation hazard that can 

potentially increase the long-term health risks for exposed service members, a 

need arose to characterize the gaps in procedure and determine risk-

assessment practices, which could be effectively employed in austere and 

hostile environments (DHB, 2008). 

As multiple complaints arose from veteran service members regarding 

burn pit exposures, so has the need to characterize the emissions and 

exposures from open air burn pits.  In 2010, 300 veteran service members 

joined a class-action lawsuit against Kellogg Brown and Root (KBR), a 
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military contractor that operated several burn pits at bases in Iraq (NY Times, 

2010).  In response to the growing concern for service-members’ exposure to 

harmful contaminants from open burn pits, and increases in respiratory 

illnesses in returning veterans, Congress and the Department of Veterans 

Affairs (VA) were directed to conduct studies which would determine the 

long-term health effects from open-air burn pit operations (IOM, 2011).  At 

the same time, the Armed Forces Health Surveillance Center (AFHSC) and 

the Naval Health Research Center (NHRC) were tasked to conduct 

epidemiologic studies to determine any associations between burn pit 

emissions and exposure-related illnesses (Armed Forces Health Surveillance 

Center, Naval Health Research Center and US Army Public Health Command, 

2010).  Later, the VA commissioned the Institute of Medicine (IOM) to assess 

the long-term health effects from exposure to burn pits in Afghanistan and 

Iraq (IOM, 2011).   

The IOM committee used the burn pit at Joint Base Balad (JBB) Iraq as 

the basis of their study to assess the long-term health effects from exposure to 

burn pits.  To aid in the IOM study, the DOD provided raw air-sampling data, 

which were used to determine which chemicals were present at JBB, and 

which chemicals were present in ambient air.  Based on this data, the 

committee found that levels of most pollutants at JBB were not higher than 

the levels measured at other polluted sites worldwide.  However, IOM found 

insufficient evidence that prevented the committee from developing firm 



www.manaraa.com

          

7 

conclusions regarding the long-term health effects caused by burn pit 

exposures.  

c. Artificial Neural Networks and predictive modeling 

An Artificial Neural Network (ANN) is a computational model based on 

the neural structure of a human brain.  ANNs are comprised of interconnected 

processing elements or neurons that are trained to solve specific problems.  As 

a nonlinear statistical data-modeling tool, ANNs establish relationships 

between an input and an output and models the result.  Results from a study 

performed by Brouch (2014) provided the foundation that ANNs may have 

the potential to predict chemical-disease associations.  

2. Problem Statement 

The Comparative Toxicogenomics Database (CTD) is a publicly available 

database that integrates scientific literature to understand how environmental 

chemical exposures affect human health.  The CTD organizes, integrates, and 

maintains data illustrating the interactions between chemicals and genes, chemicals 

and proteins, chemicals and disease, and genes and diseases (Davis et al., 2014).  The 

organization, integration, and maintenance of chemical data by the CTD results in the 

data being classified as curated.  However, current sampling of mock burn pit 

emissions identified several constituents that currently lack research and data.  The 

lack of current research and data constitutes that these constituents be classified as 

uncurated.  It is hypothesized that an ANN, coupled with current and relevant 

literature on uncurated burn pit constituents could map uncurated constituents to 

diseases across a wide variety of test species. 
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3. Research Objectives 

a. Determine the effect of Hidden Layers (HL) on ANN performance for 

constituents relevant to burn pit emissions. 

b. Determine the effect of Training, Validation, and Testing (TVT) ratios on 

ANN performance for constituents relevant to burn pit emissions. 

c. Determine the effect of chemical structure on ANN performance for 

constituents relevant to burn pit emissions. 

d. Identify key data gaps needed to advance ANN-based screening of 

constituents relevant to burn pit emissions. 

4. Research Focus 

The focus of this research is to predict the long-term health effects of uncurated 

burn pit emission constituents and verify ANN chemical-disease predictions with 

current and relevant literature.  Using current literature, data and informational gaps 

on the uncurated burn pit constituents will be determined.  The identified 

informational gaps will institute the need for further research in order to establish 

relationships between constituents, mechanisms of action, biomarkers, and disease.  

5.  Methodology 

Utilizing the mock burn pit constituent analysis performed by Woodall (2012), the 

47 constituents identified in the mock burn pit analysis were assessed using the CTD 

to verify curation status.  Of the 47 constituents, ten constituents were determined to 

be uncurated.  A curation of the ten uncurated chemicals was conducted to garner 

possible chemical-disease associations.  Using the ANN established by Brouch 

(2014), the ANN was modified and tested using the ten uncurated constituents and the 



www.manaraa.com

          

9 

disease associations curated during the literature review.  Using the uncurated 

constituents, three tests were accomplished to determine the optimal ANN 

performance standards.  The first test studied the effect of Hidden Layers (HL) on 

ANN performance.  The second test was performed with three different TVT ratios, 

which were then compared to determine their effect on the ANN performance.  The 

third test performed determined if chemicals with similar structures had an effect on 

the performance of the ANN.  The culmination of all three tests established standard 

protocol for analyzing uncurated constituents.  

6. Limitations 

a. As the number of HL increased, the ANN response time slowed.  This delay 

in response time indicated that the ANN had an optimal HL size.  Five HL 

sizes were selected and tested.  Three of the five tests demonstrated positive 

response times.  Due to time limitations, only one of the three positive 

response times was selected and further evaluated.   

b. In order to test and train the ANN, research was conducted to determine the 

current diseases associated with each constituent.  If a constituent was found 

to have only two associated diseases then the model would be trained and 

tested to associate only two random diseases.  Since uncurated constituents 

have minimal research accomplished for them, it is presumed that uncurated 

constituents may have more disease associations then those tested in this 

thesis.   

c. This work did not track specific animal species disease-chemical associations.  

All known animal species disease-chemical associations were used as input 
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into the ANN regardless of their animal species pairing.  However, animal 

species associations may be mapped to disease-chemical pairings using 

ANNs. 

d. Relevant research on the uncurated constituents is limited to the availability of 

research, testing, and evaluation for each one of the uncurated constituents. 

e. The CTD maintains limited data on chemical mixtures and the synergistic 

effects from chemical exposure. 

7. Implications 

Chemical exposure effects are determined through extensive and costly research, 

testing, and evaluation.  The focus of this thesis is to refine a previous-established 

ANN to garner an alternative method for determining chemical exposure effects.  

This alternative may reduce the time and costs needed to research, test, and evaluate 

chemical hazards.  The refined ANN may also serve as a decision support tool for 

military commanders, when faced with operations that involve the use of chemical 

hazards.   
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II. Literature Review 

1. Relevant Research 

a. The Relationship between chemicals and disease 

i. Etiology:  

This thesis focuses on establishing the need to understand how 

environmental agents influence disease.  Through genomic and toxicological 

studies, scientists and researchers have established that chemicals have the 

ability to mutate, alter, and interact with genes often influencing gene 

expression and protein function (Lane, 2002).  The effects of chemical 

compounds must be further characterized to understand the biochemical and 

genetic complexity that the chemical imposes on cells, tissues, organs, and 

overall human health.    

In order to characterize a chemical’s impact, the Environmental Protection 

Agency (EPA) uses chemical risk assessments to elucidate the human health 

and ecological risks from chemical hazards.  As of 2015, the EPA reported 

approximately 85,000 chemicals listed on the Toxic Substance Control Act 

(TSCA) Inventory (EPA, 2015).  Annually, the EPA receives 400 new Notice 

of Commencements (NOC) for chemicals that may modify the TSCA 

inventory.  Due to the amount of NOCs received by the EPA, the EPA has 

identified data gaps in the evaluation of chemicals.  These data gaps include; 

chemical use, exposure pathways, and toxicity data.  The significance of the 

missing data prevents chemical risk assessments from being accomplished.   
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The data gaps identified by the EPA, and the absence of chemical risk 

assessments, established a need for alternate methods when performing 

chemical risk assessments.  As an alternative method to understand how 

environmental chemicals affect human health, North Carolina State University 

(NCSU) developed the Comparative Toxicogenomics Database (CTD).  The 

CTD commenced a curation or data collection of environmental chemicals 

(Mattingly et al., 2003).  The CTD established a collaborative database with 

curated chemical data describing the relationships between chemicals, genes, 

proteins, and human diseases to advance the understanding of chemical effects 

on human health.  The CTD integrates all data to facilitate the construction of 

chemical-gene-disease network and provide the groundwork for investigating 

the molecular basis of chemical-disease associations and toxicity (Davis et al., 

2008).  

Despite the extensive construction and curation of data provided by the 

CTD, many chemicals remain uncurated.  Uncurated chemical data is absent 

of gene-interactions despite disease association, mechanisms, or biomarker 

associations.  Due to the data gaps, relevant information is missing that would 

otherwise help understand the basis of disease.  Despite containing uncurated 

data, the CTD contains the tools needed to generate testable hypotheses 

regarding the underlying etiology of chemical-disease relationships (Davis et 

al., 2015).   
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ii. Mechanisms of Action/Mode of Action and Epigenetics:  

A Mode of Action (MoA) describes a cellular functional or anatomical 

change resulting from environmental exposure (FDA, 2011).  In comparison, 

a Mechanism Of Action (MOA) is used in pharmacology to describe 

biochemical interaction at the molecular level.  The Federal Food, Drug, and 

Cosmetic (FD&C) Act (2016) interprets chemical action through either 

chemical reaction or intermolecular forces or both.  Chemical action either 

results in a bodily response at the cellular or molecular level or when the 

chemical binds with or modifies a molecular target or receptor.  

Identifying the effect of exposure on human health is a major objective of 

biomedical research.  In environmental health studies, it is recognized that 

environmental exposure could produce Deoxyribonucleic Acid (DNA) 

mutations.  As a consequence of DNA mutation, chemical substances have 

been categorized according to their ability to alter DNA (Pulliero et al., 2015).  

A chemical’s ability to alter DNA established a fundamental effort to 

determine risk assessment procedures, prevention, exposure reduction, and 

regulatory efforts. 

Unlike the chemical substances that cause, or are suspected to cause, DNA 

mutation, there are chemical substances that cause gene expression and 

heritable change without changing or mutating the DNA sequence.  The study 

of heritable change and gene expression is called epigenetics.  Epigeneticist’s 

investigate heritable changes in gene expression occurring through the 

mechanisms of DNA methylation, histone modification, and microRN 
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expression (Hou et al., 2012).  In vitro, animal, and human studies performed 

by Baccarelli and Bollati (2009) have identified several classes of 

environmental chemicals that modify epigenetic mechanisms resulting in the 

identification of epigenetic mechanisms that may mediate specific 

mechanisms of toxicity and specific chemical response.   Various chemical 

mechanism/mode of action are understood, others remain unidentified.  

 Baccarelli and Bollati (2009) reported that certain chemical exposures had 

altered epigenetic mechanisms, and that the same or similar epigenetic 

alterations were found in patients with the disease of concern or in diseased 

tissue.   However, it was not determined whether the exposed individual’s 

developed epigenetic alterations over time or which alterations increase the 

risk of developing disease.  Forgoing the identification of these factors 

increased the difficulty in establishing the chemical-disease relationship 

between the chemical, the epigenetic change, and the presence of disease.  At 

this time, very little is known about which epigenetic alterations are part of 

normal variability and which alterations are considered adverse.  In order to 

understand epigenetic variability and the potential for chemicals to induce 

epigenetic modifications or alterations, an understanding of the chemical’s 

mode of action (MoA)/mechanism of action (MOA) is needed.  

A workshop held by the National Academy of Sciences’ (NAS) Standing 

Committee on the Use of Emerging Science for Environmental Health 

Decisions discussed the role of chemically induced epigenetic changes in 

regulatory and policymaking decisions.  The committee concluded that 
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epigenetic testing is not sufficiently validated for inclusion into any regulatory 

process.  At this time, there is not a single/uniform test for epigenetic effects.  

Without understanding epigenetic effects, the patterns, variability, and long-

term health effects relating to epigenetic changes are not well understood.  As 

part of the committee’s recommendations, there remains a need to establish a 

tiered epigenetic screening process to prioritize chemicals for further 

epigenetic analysis (Adler, 2010).  

iii. Biomarkers:  

Silins and Hogberg (2011) divide the use of biomonitoring into three 

classes that measure biological markers of exposure, effect, and susceptibility.   

Where, biomarkers of exposure measure the parent compound, the parent 

compound’s metabolites, the biologically effective dose, and the biological 

effect (Silins and Hogberg, 2011; WHO, 2011).  Silins and Hogberg (2011) 

identified biomarkers of effect as the cellular changes that alter expression of 

metabolic enzymes and disease development, at the same time the World 

Health Organization (WHO) (2011) identifies biomarkers of effect as 

structure alteration, altered function, or clinic disease.  Lastly, the biomarker 

of susceptibility indicates the ability of an individual to respond to an 

environmental exposure (WHO, 2011). 

Traditionally, the EPA and other federal agencies characterize 

environmental risk by extrapolating a chemical dose from in vitro and in vivo 

toxicological studies.  According to Shatkin and Ranalli (2007), the use of 

biomonitoring will refine the risk characterization procedure by providing an 
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understanding of the fate and behavior of a chemical once inside the body.  

The use of biomonitoring may validate, improve, and alter future 

pharmacokinetic modeling, clinical applications, and toxicogenomic 

applications (Shatkin and Ranalli, 2007).  

Currently, biomonitoring is used in both clinical and toxicogenomic 

applications.  In clinical applications, biomonitoring is used to characterize 

exposures that occur in the occupational environment.  It is believed that 

biomonitoring data can measure and assess environmental exposure trends, 

which assists with defining the relationship between exposure and disease.  

Biomonitoring may also provide an employee baseline prior to exposure.   

In toxicogenomic applications, data from toxicogenomic studies are 

compared with in vitro cellular studies to identify chemical toxicity 

mechanisms.  Utilizing exposure measurements, gene expression changes, and 

traditional toxicological markers, the identification of chemical toxicity 

mechanisms has been processed.  The chemical toxicity mechanisms can then 

be used to generate biomarkers related to chemical exposure, chemical effect, 

or individual susceptibility (McHale et al., 2010).  Similarly, the European 

Commission (EU) funded a research project on gene expression analysis and 

its use in relating biomonitoring to environmental carcinogenic exposures 

(Van Leeuwen et al., 2008). Van Leeuwen et al. (2008) consider the use of 

biological monitoring and biomonitoring as a way to profile gene expression 

in relation to human environmental exposures.    
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The EU research project found that gene expression profiles differed 

according to the population’s environmental exposure.  This finding resulted 

in the correlation between gene expression and the blood/urinary measures of 

biomarkers used to observe environmental carcinogen exposure.  The EU 

project also provided evidence that exposure to environmental carcinogens 

affected the metabolism, stress response, signaling pathway, and the 

tumorigenesis of the studied genes.  Overall, the EU is pressing for an 

increase in biomonitoring activities during the analysis of environmental 

health risks (Van Leeuwen et al., 2008).   

According to Adelman (2005) the United States employs inadequate 

chemical testing methods to determine chemical risk.  Both chemical risk 

assessments and toxicological studies face limitations due to the lack of 

chemical information.  As a method to combat these limitations, the 

integration of genomics and toxicology is developing into a new research field 

call toxicogenomics.  Toxicogenomics will help to identify biomarkers of 

exposure as well as relate disease to an environmental exposure.  To promote 

the technological development to monitor gene, protein, and metabolite 

expression, the National Institute of Environment Health Science (NIEHS) has 

developed the National Center for Toxicogenomics.  As of 2002, the Center 

was awaiting a tool to monitor the expression of thousands of genes, proteins, 

metabolites, and gene-environment interactions (Tennant, 2002).  
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iv. Chemical Properties  

A method of assessing chemicals is through structure-activity relationships 

(SARs).  SARs are designed to find the relationship between chemical 

structure, chemical structure related properties, and biological activity 

(OECD, 2016).  SARs link chemical structure to a chemical property or a 

biological activity such as toxicity (OECD, 2016).   According to the 

Organization for Economic Co-operation and Development (OECD) (2016), 

the theory behind SARs is that the activity of the chemical is found within the 

chemical’s structure.  Therefore, the structure of a chemical contains the 

features responsible for the chemical’s physical, chemical, and biological 

properties (OECD, 2016).  The biological activity of a compound may alter 

the chemical or physiological function of a cell, tissue, organ, or organism 

through the compound’s physical and chemical makeup, concentration, and 

duration of exposure.  OECD (2016) presumes that biological activities of a 

compound are governed by the compound’s properties, which are determined 

by the compound’s structure.   

Abraham et al. (1989) considered the molecular weight and number of 

hydrogen bond donors and acceptors as physicochemical properties. 

Physicochemical properties predict a chemical’s physical hazard, reactivity, 

and pharmacokinetics to include the chemical’s absorption through exposure 

routes, the chemical’s distribution in the body, and the chemical’s metabolites.  

By understanding a chemical’s pharmacokinetics and physicochemical 

properties, Abraham et al. (1989) identified the key properties responsible for 
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chemical absorbtion through various exposure routes.  Molecular weight, the 

number of hydrogen-bond donors and acceptors, and logKow were identified as 

predictors of oral absorption.  Chemical absorption through the skin depended 

upon the degree of hydrogen bonding.  Unlike ingestion and cutaneous 

absorption, chemical inhalation prediction requires the use of vapor pressure, 

water solubility, and the chemical’s reactivity.  

Understanding the chemical characteristics that affect toxicity, Abraham et 

al. (1989) determined that a chemical with a large number of hydrogen bond 

donors had a reduced permeability rate.  Chemicals with five or fewer 

hydrogen bond donors had an increase in permeability.  When studying the 

molecular weight, Abraham et al. (1989) determined that lower molecular 

weight compounds maintained a lower lipophilicity, while higher molecular 

compounds resulted in higher lipophilicity.  As a result of this study, Abraham 

et al. (1989) determined that higher molecular weight chemicals resulted in 

reduced blood brain barrier permeability (Abraham et al., 1989).     

Furthering the Abraham et al. (1989) study, Lipinski et al. (1997) analyzed 

the physiochemical properties of 2,000-plus drugs to determine drug 

permeability and absorption potential.  During their analysis, Lipinski et al. 

(1997) determined that permeability rates and absorption potential increased 

due to a compound’s molecular weight, lipophilicity (expressed as logP), 

number of hydrogen bond donors, and the number of hydrogen bond 

acceptors.  The Lipinski et al. (1997) findings are known as the Lipinski Rule 

of Five; which determines a compound’s membrane permeability and ease of 
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absorption when the compound has a molecular weight less than 500, a 

lipophilicity less than five, the number of hydrogen-bond donors is fewer than 

five, and the number of hydrogen-bond acceptors is fewer than 10.  

Using known toxic compounds, Struck et al. (2008) determined the 

biological activity toxicity profile for 50,000 toxic compounds for use as a 

toxicological classification guide.  Struck et al. (2008), identified toxic 

compounds based on their structural properties.  The structural properties 

identified as “toxicity properties” contain toxicity defining attributes identified 

as the compound’s molecular weight, the number of hydrogen bond donors 

and acceptors, and functional groups (Struck et al., 2008).  Struck et al. 2008 

identified that the use of SARs for predicting toxicity is limited due to the 

complexity of the structure of toxic biological macromolecules, the variability 

of metabolic pathways, toxicity differences among animal and plant species, 

the effects of substituents on the reactivity of the core chemical, and the effect 

of steric properties.  However, some researchers have developed SARs based 

on key structure components.  

b. Burn pits  

i. Burn Pit Emissions: 

Due to the limited nature of open air burn pit emission studies, and the 

difficulty of assessing, characterizing, and quantifying burn pit emissions and 

associated exposures, Lemiux et al. (2004) identified that emissions from 

burning waste varied from source to source.  Lemiux et al. (2004) identified 
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that the fuel composition, fuel heating value, bulk density, oxygen transport, 

and combustion varied from source to source.  

Woodall et al. (2012) attempted to characterize burn pit emissions during 

small-scale emissions testing of simulated military deployment waste. 

Woodall et al. (2012) identified burn pit constituents using a representative 

collection of military waste based on expert knowledge of DOD personnel.  

The waste stream sampled consisted of large amounts of styrofoam, 

electronics, packaging materials, construction materials, food waste, canvas 

material, Meals Ready to Eat (MRE) waste, and plastic water bottles.  The 

analysis of the emissions testing concluded that 47 volatile organic 

compounds (VOCs) were present in the burn pit emissions.  Ten of the 47 

VOCs lacked constructed curated chemical-disease relationships by the CTD, 

thus becoming the uncurated chemical constituents tested within this thesis.  

Aurell et al. (2012), further characterized burn pit emissions to assess 

potential inhalational exposures.  Aurell et al. (2012) collected 41 Semi-VOCs 

(SVOCs), PM2.5 by filter, and VOC samples.  21 VOCs were found to be 

present in the Aurell et al. (2012) burn pit emissions.  Three of the 21 VOCs 

lacked constructed chemical-disease relationships by the CTD.  The Woodall 

et al. (2012) and the Aurell et al. (2012) study found two of the same 

uncurated constituents: propene and vinyl acetate.  15 of the 21 VOCs 

identified in the Aurell et al. (2012) study are listed as EPA hazardous air 

pollutants.  The Aurell et al. (2012) study also identified the following 
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emissions: phenanthrene, naphthalene, lead, iron, copper, chromium, arsenic, 

nickel, and cadmium. 

ii. The Relationship between Uncurated Burn Pit Constituents and Disease 

The following research was accomplished to identify the relationship 

between the ten uncurated burn pit constituents identified by Woodall et al. 

(2012) and their known disease associations.  In order to understand the 

relationship between uncurated constituent and disease, the mechanism or 

mode of action was also identified for each uncurated chemical.  The 

qualitative impacts of the associated diseases, mechanisms and modes of 

action are not fully defined and exclude the quantitative differences between 

test species.  Additionally, the mechanism or modes of action that cause 

disease are not considered a constant property of the chemical.  The 

mechanism or mode of action that causes disease are subject to variation 

between species and may change with chemical concentration and duration of 

exposure (Nendza and Wenzel, 2006).   

The physio-chemical properties of chemical compounds are toxic in 

different ways due to the compound’s interactions at the biomolecular level.  

Nendza and Wenzel (2006) identified that physio-chemical properties also 

determine the transport and interaction of the compound with biomolecular 

targets.  Partitioning of the chemical across a membrane often resulted in non-

specific toxicity, while chemical interaction between compounds with specific 

targets produced an increase in toxicity (Nendza and Wenzel, 2006).  Nendza 

and Wenzel (2006) also determined that chemical compounds did not 
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maintain the same mechanism of action during cross species analysis.  The 

change in the mechanism of action across species was determined to occur 

from the change in the abundance of mechanism specific targets and the 

endpoint measured by each experiment.   

Chemical compounds are also hypothesized to interact with several targets 

to varying extents in different species.  These interactions between the 

chemical and the varying targets may result in multiple concurrent effects.  

20% of the chemicals tested by Nendza and Wenzel (2006) demonstrated two 

concurrent mechanisms of disease, and 5% of the chemicals tested revealed 

three concurrent mechanisms of disease.    

The following diseases, mechanisms or modes of action for the ten 

uncurated burn bit constituents are based on the best available research.  The 

MoA/MOA for each constituent was selected using metabolism and 

pharmacokinetic studies. 

1. 4-Ethyltoluene 

4-Ethyltoluene is an active sister chromatid exchange agent in vitro 

balb mice bone marrow cells (Janik-Spiechowicz and Wyszynska (1998).  

Sister chromatid exchanges (SCEs) involve the breakage of both DNA 

strands, followed by an exchange of the whole DNA strand.  SCEs have 

been correlated with recombinational repair and the induction of point 

mutations, gene amplification and cytotoxicity (CRIOS, 2008).  According 

to the National Library of Medicine (2013), point mutations are associated 
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with the development of cystic fibrosis.  The Cancer.Net Editorial Board 

(2012) found that point mutations have been associated with cancer.   

Swiercz et al. (2000) found that in vivo rat repeated-dose inhalational 

toxicity studies to 4-ethyltoluene resulted in elevated serum levels of 

gamma-glutamyl transferase (GGT); a biomarker of oxidative stress.  

Oxidative stress may damage cells by damaging proteins, lipids, and DNA 

which can disrupt the cellular signaling mechanisms.  Slupphaug et al. 

(2007) identified DNA Damage caused by oxidative stress may prevent 

proper base pairing resulting in strand breaks.  In humans, oxidative stress 

is hypothesized to be involved in the development of neurodegenerative 

diseases (Patel and Chu, 2011), cancer (Halliwell, 2007), atherosclerosis 

(Bonomini et al., 2008), heart failure (Singh et al., 1995) myocardial 

infarction (Ramond et al., 2011), and chronic fatigue syndrome (Kennedy 

et al., 2005).   

Swiercz et al. (2000) also identified the concentration-related increase 

in lactate dehydrogenase (LDH) with in vivo rat repeated-dose 

inhalational toxicty studies to 4-ethyltoluene.  LDH is medically 

significant due to its release when tissue damage has occurred.  As a 

biomarker of oxidative stress, LDH is a commonly linked to heart failure, 

liver disease, cancer (Gersten, 2014), lung disease (Drent et al., 1996), and 

hypothyroidism (McGrowder et al., 2011).  Yorifuji et al. (2012) identified 

a prevalence of respiratory and mucocutaneous zone irritation when 
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exposed to VOCs containing 4-ethyltoluene.  4-Ethyltoluene mechanisms 

stated above are consistent with the irritant properties of VOCs.    

2. Benzanthrone 

Singh et al. (2003) discovered that benzanthrone could induce lipid 

peroxidation in vivo guinea pig comparative safety assessments.  Lipid 

peroxidation is one of the main molecular mechanisms involved in the 

oxidative damage to cellular structures and the toxicity process that leads 

to cellular death (Repetto et al., 2012).  According to TOXNET (2003), 

benzanthrone induced toxicity is suggested to take place in areas of the 

cell where there is an increase in the production of lipid peroxides.  These 

areas include the nuclear, mitochondrial, and microsomal membranes.  

Further evaluations revealed enhanced oxidative stress, upregulation of 

prominent inflammatory markers, and DNA damage coinciding with 

benzanthrone exposures.  Tewari et al. (2015) found that the 

administration of benzanthrone in vivo studies with mice also induced 

enzyme activation that consisted of mechanistic pathways involved in 

inflammatory manifestations, which suggests that benzanthrone is an 

immunotoxin agent.  Upon exposure to light benzanthrone generates 

active oxygen species.  The National Research Council (1999) 

hypothesized that the active oxygen generation of benzanthrone might be 

responsible for the photo-contact dermatitis experienced in humans.  The 

oxidative stress mechanism associated with benzanthrone is consistent 
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with the skin disorders documented with contact exposures to 

benzanthrone.     

Sidhu et al. (2005) identified benzanthrone as a suspected human 

Endocrine disrupting chemical (EDC) based on the structual similarities to 

both known and suspected EDCs.  De Coster and Van Larebeke (2012) 

discerned that EDCs mimic or block the transcriptional activation elicited 

by naturally circulating steroid hormones by binding to steroid hormone 

receptors.  EDCs increase or block the metabolism of naturally occurring 

hormones by activating or antagonizing estrogen, androgen, and thyroid 

hormone receptors.  Tabb and Blumber (2013) observed EDCs effect on 

the genome, DNA, and lipid metabolism.   

3. Benzyl Chloride  

Evaluation of benzyl chloride by TOXNET (2014) identified benzyl 

chloride as causing an increase in the alkylation of DNA resulting in 

alkylation lesions in DNA and RNA in vivo mice studies.  Drabløs et al. 

(2004) demonstrated how alkylation lesions may result in genotoxicity and 

cytotoxicity, eventually resulting in cytotoxic double-strand breaks of the 

DNA.  Alkylating agents, like benzyl chloride, inhibit the transcription of 

DNA into RNA, thus stopping protein synthesis, which triggers 

apoptosis.  Alkylating agents also substitute alkyl groups for hydrogen 

atoms in the DNA sequence, resulting in the formation of cross-links in 

the DNA chain.  The National Library of Medicine (NLM) (2015) 

identified that cross links in the DNA sequence can result in cytotoxic, 
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mutagenic, and carcinogenic effects.  Typically, alkylating agents 

primarily affect hematopoietic cells, reproductive cells, endothelial cells, 

bone marrow, and the cells of the gastrointestinal tract.  The NLM (2015) 

also associated the common side effects of alkylating agents.  These side 

effects include anemia, pancytopenia, amenorrhea, impaired 

spermatogenesis, intestinal mucosal damage, alopecia, and an increased 

risk of malignancy.  Benzyl Chloride animal carcinogenicity is consistent 

with the alkylation of DNA mechanisms.   

Similar to benzanthrone, benzyl chloride also induces lipid 

peroxidation during in vitro rat liver testing (EC, 2014).  Benzyl chloride 

also produced SCE with point mutations in vitro hamster studies (EC, 

2014).  Disparate from the other uncurated burn pit chemicals, benzyl 

chloride is associated with a dose-dependent increase in the number of 

chromatid aberrations in rat epithelial cells (EU, 2014).  The chromatid 

aberrations created by benzyl chloride produce breaks and gaps in the 

chromatids during and after replication.  Chromatid aberrations often 

result in chromosomal or genome mutations.   

Benzanthrone is a Polycyclic Aromatic Hydrocarbon (PAH).  Abdel-

Shafy and Mansour (2015) describe PAHs as highly lipid soluble in 

mammalian gastrointestional tracts.  Abdel-Shafy and Mansour (2015) 

further describe both acute and chronic effects of PAH exposure with the 

caveat that short-term human health effect information of PAHs is not 

clear.  High levels of PAH exposures have resulted in eye irritation, 
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nausea, vomiting, diarrhea, and confusion in humans (Abdel-Shafy and 

Mansour, 2015).  Long-term human exposures to PAHs have resulted in 

decreased immune function, cataracts, kidney damage, liver damage, 

breathing problems, asthma-like symptoms, lung function abnormalities, 

skin redness, and skin inflammation (Abdel-Shafy and Mansour, 2015). 

Irigaray and Belpomme (2009) suggest that PAHs with low molecular 

weights and three to four rings are non-genotoxic carcinogen promoters 

causing the expansion of initiated cells.  Non-genotoxic promoters are also 

suggested to cause preneoplastic cells to escape cellular growth control 

mechanisms.  Irigaray and Belpomme (2009) also suggest that PAHs are 

cocarcinogens, whereas, cocarcinogens activate carcinogens, and may 

enhance the carcinogens effects.  The mechanisms by which 

cocarcinogens activate, enhance, or effect carcinogens are through the 

depletion of detoxifying proteins, inhibit enzymatic activity, inhibit DNA 

repair enzymes, and/or activate procarcinogenic material into carcinogenic 

material.  

4. n-Heptane 

The irritation and central nervous effects occurring from n-heptane 

exposures are linked to the lipophilic properties of n-heptane (MAK Value 

Documentation, 1998).  Szutowski (2009) suggests that cytochrome P450 

produces n-heptane metabolites which modulate the biotransformation of 

n-heptane, resulting in the oxidation of n-heptane during in vitro rat 

studies.  Oxidation in the body can damage cell membranes, cellular 
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proteins, lipids, and DNA.  Oxidative DNA damage may result in the 

production of single or double stranded DNA breaks, base modifications, 

or rearrangements.  Due to the limited research available, n-heptane’s 

mechanisms of disease could not be compared to n-heptane 

symptomology.  

5. n-Octane 

Similar to n-heptane, n-octane is also metabolized by cytochrome 

P450 and undergoes oxidation.  An in vivo rat study by Pandya et al. 

(1982) cited in TOXNET (2014) observed the increase in liver and spleen 

alkaline phosphatase (ALP) when exposed to n-octane.  Increased ALP 

activity is associated with hepatobiliary and bone diseases.  Tietz (1999) 

associated elevated ALP levels with disorders of the skeletal system, 

hyperparathyroidism, osteomalacia, fractures, and malignant tumors.  

Khan et al. (1980) linked n-octane to lipid peroxidation induction.  

Yorifuji et al. (2012) identified a prevalence of respiratory and 

mucocutaneous zone irritation when exposed to VOCs containing n-

octane.  n-Octane mechanisms stated above are not consistent with the 

irritant properties of VOCs.    

6. Propene 

Propene is expected to undergo hydration becoming an alcohol, and is 

later excreted as a conjugated alcohol or propionic acid.  Similar 

hydroxylate chemical reactions involve cytochrome P450.  TOXNET 

(2005) hypothesizes that propene may be metabolized by cytochrome 
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P450.  Due to the limited research available, propene’s mechanisms of 

disease could not be compared to propene symptomology. 

7. Salicylaldehyde 

Freda (1970) demonstrated salicylaldehyde’s enzyme inhibition effects  

in vitro bovine testing.  Enzyme inhibitors alter the catalytic action of 

enzymes causing a delay or discontinuance of catalysis.  Similar to 

benzanthrone, the EPA classified salicylaldehyde as an EDC.  De Coster 

and Van Larebeke (2012) suggest that EDCs contribute to cancer, 

diabetes, obesity, metabolic syndrome, and infertility.  EDCs may act 

through classical nuclear receptors, but also through estrogen-related 

receptors, resulting in enzyme activation or modulation.  De Coster and 

Van Larebeke (2012) proposed that EDCs interfere with feedback 

regulation, neuroendocrine cells, DNA methylation, which results in 

histone modifications, while Tabb and Blumber (2013) suggests that 

EDCs activate mitogen-activated protein kinase.  Due to the limited 

research available, salicylaldehyde’s mechanisms of disease could not be 

compared to salicylaldehyde symptomology. 

8. Tetrahydrofuran 

The mode of action and the biotransformation mechanisms of 

Tetrahydrofuran (THF) are not well understood.  The Proposal for 

Harmonised Classification and Labeling (2009) hypothesized that 

tetrahydrofuran undergoes an alpha-hydroxylation, followed by a 

subsequent ring opening.  This process is suspected to produce a 
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hepatotoxic aldehyde.  The Proposal for Harmonised Classification and 

Labeling (2009) also hypothesized that the oxidation of the hydroxyl 

group before the ring opening occurs, leading to the formation of a 

gamma-butyrolactone; a potential neurotoxic and a gamma-hydroxibutyric 

acid.     

The European Chemical Agency (ECHA) (2010) suggests that 

tetrahydrofuran is capable of inhibiting cytochrome P450 in vitro rat 

biotransformation studies.  This inhibition of cytochrome P450 may cause 

the formation of peroxides and formaldehyde to occur.  The Proposal for 

Harmonised Classification and Labeling and ECHA also suggest that 

tetrahydrofuran oxidative metabolism occurs due to cytochrome P450.  

However, the enzymes responsible for Tetrahydrofuran metabolism are 

not yet known.  

Mode of Action in vivo rat research conducted by ECHA suggests that 

the tetrahydrofuran is responsible for liver toxicity while the metabolites 

of tetrahydrofuran are responsible for neurological effects.  In vivo 

tetrahydrofuran studies also produced mitogenic effects in mice tissue, yet 

tetrahydrofuran demonstrated the ability to modify drug absorption and 

metabolism mechanisms, which may give rise to chemical distinctive 

toxicities.   

Chhabra et al. (1998), and the U.S. Department of Health and Human 

Services (1998) as cited in TOXNET (2011), identified tetrahydrofuran as 

an animal carcinogen during in vivo rat and mouse inhalational studies.   
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Tetrahydrofuran demonstrated positive results for liver 

adenoma/carcinoma, and renal tubule adenoma/carcinoma, in both rat and 

mouse test subjects.  These studies indicate that the oxidative stress and 

the metabolism of tetrahydrofuran are realistic mechanisms of disease for 

tetrahydrofuran exposures.   

9. Triphenylene 

Triphenylene is a Polycyclic Aromatic Hydrocarbon (PAH).  

Historically, the toxic effects of highly lipid soluble polycyclic aromatic 

hydrocarbons were not well documented (Sikkema et al., 1995).  

However, Sikkem et al. (1995) concluded that the specific toxicity of 

certain PAHs, when performed with a liposomal model, show that the 

absence of mass transfer limitation affects the PAHs energy transduction 

across biological membranes. 

Irigaray and Belpomme (2009) suggest that PAHs with low molecular 

weights and three to four rings are non-genotoxic carcinogen promoters 

causing the expansion of initiated cells.  Non-genotoxic promoters are also 

suggested to cause preneoplastic cells to escape cellular growth control 

mechanisms.  Irigaray and Belpomme (2009) also suggest that PAHs are 

cocarcinogens, whereas, cocarcinogens activate carcinogens, and may 

enhance the carcinogens effects.  The mechanisms by which 

cocarcinogens activate, enhance, or effect carcinogens are through the 

depletion of detoxifying proteins, inhibit enzymatic activity, inhibit DNA 

repair enzymes, and/or activate procarcinogenic material into carcinogenic 
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material.  Due to the limited research available, triphenylene’s 

mechanisms of disease could not be compared to triphenylene 

symptomology. 

10. Vinyl Acetate 

Similar to 4-ethyltoluene, vinyl acetate also induces SCE in 

mammalian in vitro studies.  Unlike 4-ethyltoluene, vinyl acetate induced 

structural chromosome aberrations which further induce DNA cross-links 

mammalian in vitro studies.  The Proposal for Harmonised Classification 

and Labeling (2010) identified that vinyl acetate induced changes causing 

fatty degeneration of hepatic parenchyma, and the proliferation and 

extension of smooth endoplasmic reticulum.  Vinyl acetate also caused 

cell proliferation, cytotoxic effects, and mitotic inhibition during in vivo 

rat studies.  Acetaldehyde, a metabolite of vinyl acetate through esterase-

mediated metabolism, exhibited genotoxicity, induced DNA protein 

crosslinking and chromosomal damage in mammalian in vitro testing.     

A risk assessment accomplished for the European Commission (EC) 

(2008) on vinyl acetate, identified vinyl acetate as genotoxic having a 

threshold mode of carcinogenic action in vivo rat studies.  Genotoxic 

carcinogens damage DNA through covalently binding to the DNA.  The 

DNA binding can occur as a direct binding to the DNA, after enzymatic 

activation, or by insertion into the DNA double helix (Van Delft et al., 

2004).  DNA damage can result in the dysfunction of the cell cycle, DNA 

repair, and lead to apoptosis. 
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The 2008 European Commission Risk Assessment identified vinyl 

acetate as inducing cellular proliferation at high levels during cancer 

studies.  During the cancer studies, EC researchers assumed that 

cytotoxicity was the underlying mode of carcinogenesis.  In vivo rat 

studies vinyl acetate exposures resulted in an increase in cell proliferation 

due to mitogenic actions, which lead to tumor formation.  The European 

Commission (2008) presently accepts that acetaldehyde plays a critical 

role in the tumorigenicity of vinyl acetate, and suggests that the hydrolysis 

product of acetaldehyde is the active carcinogenic metabolite of vinyl 

acetate.  Vinyl acetate symptomology is consistent with the established 

mechanisms of disease. 

c. Using ANNs for predictive modeling 

An artificial neural network (ANN) is a computational empirical model that is 

modeled after biological neurons.  ANNs consist of inputs, weights, and 

mathematical functions in order to detect complex nonlinear relationships 

between dependent and independent variables in a given data set.  Adjusting the 

weight of an ANN symbolizes how the model can be trained in order to obtain an 

output for a set of given inputs.  Since the first use of ANNs in 1943 (Gershenson, 

2016), ANNs have been used to map associations when the data contains 

variables that are vague, or difficult to describe.  ANNs are currently used in 

diagnostic systems, biochemical analysis, image analysis, and drug development.  

The pharmaceutical industry is using ANNs to associate subsets of 

physiochemical descriptors with biological activity profiles to provide an 



www.manaraa.com

          

35 

understanding of how biological activity is elicited by a chemical structure.  

Llewellyn (2007) used this approach to predict drug likeness and toxicological 

effects.  Unlike the pharmaceutical industry, the medical industry according to 

Rae et al. (1999) applied the use of ANNs as a decision support tool to help 

clinicians identify populations who are at an increased risk for developing specific 

diseases.  The medical use of ANNs demands extensive development into the type 

and number of parameters used by the ANN—specifically the number of neurons 

in each layer and the applied learning algorithm.  

Other medical uses of ANNs have occurred when Sheppard et al. (1999) used 

neural networks to identify potential patients at risk of developing 

cytomegalovirus disease.  Santos-Garcia et al. (2004) also used ANNs to predict 

patients’ morbidity from cardiorespiratory failure after non-small cell lung cancer 

pulmonary resection.  Tseng et al. (2013) examined patient risk factors associated 

with hip fractures using ANNs.  Alizadeh et al. (2015) created an ANN that 

accurately predicted the diagnosis of asthma.      

d. Using ANNs to link chemicals and disease 

ANNs have established their usefulness in medical and pharmaceutical 

prediction.  However, research is limited to demonstrate how ANNs model 

chemical-disease association.  Most often the research on the prediction of 

chemical-disease association involves the use of ANN Quantitative Structure 

Toxicity Relationship (QSTR) and an ANN Quantitative Structure-Activity 

Relationship (QSAR).  ANN QSTRs are often used to map the relationship 

between a chemical’s molecular descriptors and its toxicological activity, while 
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QSARs correlate physiochemical parameters to either a chemical or biological 

activity.  Cheng and Sutariya (2012) describe the use of ANN QSTR in the study 

of pharmacotoxicology, and the use ANN QSAR as a screening approach during 

the drug discovery process.  

Modeling drug response, Larder et al. (2007) demonstrated the use of an ANN 

developed to predict responses to antiretroviral therapy.  Larder et al. (2007) 

identified that their developed ANN is limited by its capacity to only predict 

response to drugs that are included in the training dataset; thus, creating the need 

for further training of their model.  Sibanda and Pretorius (2012) detailed the use 

of ANNs in the war against the Human Immunodeficiency Virus (HIV).  As cited 

by Sibanda and Pretorius (2012), Dechao Wang et al. (2009) developed an 

artificial neural network (ANN) that predicted the virological response to HIV 

drug therapy.  Similarly, Agatonovic-Kustrin and Beresford (1999) showed that 

their ANN model demonstrated better fitting and better predicting abilities in their 

investigation of the effects of pharmaceuticals.  The ANN developed by 

Agatonovic-Kustrin and Beresford (1999) produced correlation values indicating 

strong association between the testing and training data.  The high correlation 

values demonstrated that the ANN was able to predict pharmacokinetic and 

pharmacodynamic (PK-PD) relationships.  

In the attempt to understand compound specific toxicity, Vracko et al. (1999) 

demonstrated the difficulty of using ANNs to predict toxic effects.  Vracko et al. 

(1999) displayed the complications of predicting specific toxicities for 41 benzene 

analogues.  However, the Vracko et al. (1999) ANN established that ANNs were 
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better capable of predicting toxicity classes versus predicting compound specific 

toxicity.  Villemin et al. (1994) used an ANN to predict the carcinogenicity of 94 

PAHs.  The Villemin et al. (1994) ANN correctly associated and classified 81 of 

the 94 PAHs according to their activity.  Gini et al. (1999) identified that 

molecules with identical or similar chemical descriptors differ in toxicity.  The 

toxicity difference occurred due to the diversity in test animal metabolism.  The 

ANN used by Gini et al. (1999) was not able to distinguish the toxicity between 

certain chemicals with similar descriptors, resulting in the need for further 

knowledge of the bioprocesses involved in chemical metabolism and the 

structural features of the chemical that characterize the chemical’s specific 

mechanism of action.  

2. Summary 

The articles reviewed and discussed in the above literature review represent a 

small research sample related to the key concepts used to develop this thesis.  The 

purpose of this literature review was intended to provide a general familiarization 

with current and relevant research regarding chemical-disease relationships, burn pits, 

and artificial neural networks.  As a result of current and relevant research, the use of 

ANNs as predictors of disease have been used and verified in various capacities.  

However, the DOD as an aid in predictive applications has not employed the use of 

ANNs.  Identifying burn pit constituents, their physicochemical properties, their 

anticipated acute health effects, and chronic health risks can be characterized using an 

ANN.  Existing data gaps between chemical relationships, biomarkers, and disease 

will be identified with the expectation that further research will occur.  While the goal 
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of the analysis was to provide a decision-support tool, the risk-assessment related 

burn pit exposures would aid in the anticipation, recognition, prevention, mitigation, 

control, communication, and documentation of future exposures. 
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III. Methodology 

1. Data 

a. Training Data 

The data used to train the Brouch MATLAB® ANN was obtained and used 

previously by Brouch (2014).  Training input data was originally obtained from 

curated Comparative Toxicogenomics Database (CTD) data.  The chemicals used 

in the Brouch MATLAB® ANN were selected randomly from curated CTD data 

by Brouch (2014).   

b. Testing Data  

The data used to test the Brouch MATLAB® ANN was obtained from 

Woodall’s (2012) burn pit constituent air sampling and thesis.  Woodall (2012) 

identified 47 VOCs in the burn pit air sampling results.  Each VOC was 

selectively compared to curated CTD data to verify the constituent’s curation 

status.  Ten of the 47 VOCs were not curated by the CTD.  The ten VOCs were 

then curated by the author to identify the following: chemical structure, molecular 

weight, the number of hydrogen bond acceptors, the number of hydrogen bond 

donors, mechanism/mode of action, and related associated diseases. 

c. Constituents 

Table 1 displays the selected ten uncurated constituents.  Table 1 lists the 

constituent name, synonyms, chemical abstracts service (CAS) number, molecular 

weight, structure diagram, associated diseases, and associated mechanism/mode 

of action.  Chemical-associated diseases were selected based on toxicity studies 
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using only the specified chemical and no chemical mixtures from peer-reviewed 

literature.  

i. 4-Ethyltoluene 

4-Ethyltoluene is a benzene derivative.  At this time, research is limited on 

4-ethyltoluene and its effects (PubChem, 2015).  A study performed by 

Yorifuji et al. (2012) identified 4-ethyltoluene as a VOC constituent being 

released from a plastic reprocessing factory in Japan.  Based on the study 

performed by Yorifuji et al. (2012), the researchers found a prevalence of 

mucocutaneous and respiratory symptoms in residents closest to the plastics 

factory.  Other symptoms experienced during this study include sore throat, 

eye itch, eye discharge, eczema, and sputum (Yorifuji et al., 2012). 

ii. Benzanthrone 

Benzanthrone is an industrial chemical that can be found in dye 

intermediates and as a product of fossil fuel combustion (TOXNET, 2003).  

Benzanthrone has been detected in particulates from diesel engines’ exhaust, 

municipal waste incinerator ash, and wood and coal smoke.  Due to the vapor 

pressure of benzanthrone, it will exist in both the vapor and particulate phases 

in the atmosphere.  Exposure to benzanthrone can occur through dermal 

contact, inhalation, and ingestion.  Skin disorders due to benzanthrone are 

more frequent in warm seasons and are significantly aggravated by heat and 

light (Encylopedia of Occupational Health and Safety, 1971)  
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Chronic exposures to benzanthrone have been documented to cause loss of 

appetite resulting in weight loss, intolerance of fatty foods, liver impairment, 

and gastritis.  Workers reported general fatigue and weakness along with 

complaints of decreased sexual potency, increased neurasthenic syndrome, 

accelerated pulse, and reduced blood pressure.  Contact exposures to 

benzanthrone have resulted in skin sensitization, eczema, erythema, 

dermatitis, and skin pigmentation.  A study performed by Sidhu et al. (2005), 

identified benzanthrone as a suspected Endocrine Disrupting Chemical 

(EDC).  

iii. Benzyl Chloride 

Benzyl chloride is used as a chemical intermediate in the manufacture of 

dyes, pharmaceutical products, photographic developer, perfume, flavor 

products, synthetic tannins, pesticides, and petrol (TOXNET, 2015).  Acute 

occupational exposures to benzyl chloride have resulted in respiratory tract, 

skin, eye, pulmonary, and mucous membrane irritation.  Other 

symptomatology includes severe irritation of the upper respiratory tract with 

coughing, conjunctivitis, dizziness, weakness, headache, eyelid and finger 

tremors, increased bilirubin levels in blood, and a decrease in number of 

leukocytes.  Lung damage, pulmonary edema, permanent eye damage, and 

CNS depression are suspected after severe benzyl chloride exposure 

(TOXNET, 2015).   

Animal data indicate that long-term exposure to benzyl chloride showed 

an increase in the incidence of benign and malignant tumors, along with an 
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increase in thyroid tumors in female rats.  At this time, there is limited human 

evidence for the carcinogenicity of benzyl chloride.  Based on the coupling of 

animal studies and the insufficient and inadequate data on human studies, the 

EPA (2000) has classified benzyl chloride as a Group B2, probable human 

carcinogen.  American Conference of Governmental Industrial Hygienists 

(ACGIH) classified benzyl chloride as a confirmed animal carcinogen with 

unknown relevance to humans (HSDB, 2015)  

The EPA (2000) detected benzyl chloride in air emissions from the 

burning of polyvinyl chloride, neoprene, and urethane foam compounds.  The 

EPA (2000) reported acute exposure to high concentrations of benzyl chloride 

causing central nervous system impairment including dizziness, headaches, 

weakness, and fatigue.  Eye contact with benzyl chloride may result in 

permanent eye damage, while ingestion of benzyl chloride may cause mouth, 

throat, and gastro-intestinal tract burns that result in nausea, vomiting, cramps, 

and diarrhea (EPA, 2000).   

The chronic effect of benzyl chloride exposure in humans has not been 

studied.  However, chronic animal exposure to benzyl chloride suggests that 

benzyl chloride specifically targets the stomach and heart.  At this time, there 

are no studies indicating human developmental or human reproductive effects.   

However, a rat in vivo study demonstrated an increase in embryonal mortality, 

along with developmental retardation in the offspring of exposed rats.  
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iv. n-Heptane 

n-Heptane is used as an industrial solvent, anesthetic, laboratory reagent, 

in the petroleum refining process, and as a paint/coating additive (NJ DOH, 

2007).  Consumer use of n-heptane includes adhesives, sealants, automotive 

care products, ink, toner, and plastic/rubber products (PubChem, 2015).  

Acute exposure to n-heptane has been documented to cause eye, nose, and 

throat irritation, headache, lightheadedness, dizziness, lack of coordination, 

loss of consciousness, and loss of appetite.  Chronic exposure to n-Heptane 

included skin rash, skin dryness, and skin redness.  Limited research suggests 

that n-heptane may affect the central nervous system to include symptoms of 

memory loss, withdrawal, irritability, fatigue, sleep disturbances, and 

extremity weakness.  Historically, the EPA (1989) did not classify n-heptane 

as a carcinogen and could not verify n-Heptane’s ability to cause reproductive 

hazards.   

v. n-Octane 

n-Octane is used as a fuel additive, paint/coating additive and as a solvent 

(HSDB, 2014).  A study performed by Yorifuji et al. (2012), identified n-

octane as a VOC constituent being released from a plastic reprocessing 

factory in Japan.  Based on the study performed by Yorifuji et al. (2012) a 

prevalence of mucocutaneous and respiratory symptoms in residents closest to 

the plastics factory was found and associated with n-octane exposures.  

Specifically, the symptoms of sore throat, eye itch, eye discharge, eczema, and 

sputum were increased among the residents (Yorifuji et al., 2012).  Human 
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exposure studies to n-octane, have determined that n-octane exposure can 

cause giddiness, vertigo, headaches, stupor, epileptic seizures, respiratory tract 

irritation, visceral damage, chemical pneumonitis, pulmonary edema, skin 

blisters, and hemorrhaging (HSDB, 2014).    

vi. Propene 

Propene is used in plastics, carpet fibers, as a fuel additive, chemical 

intermediate, aerosol propellant, and in medication (HSDB, 2014).  Acute 

exposures to propene have been documented to cause dizziness, 

lightheadedness, and loss of consciousness.  Chronic exposures to propene 

include liver damage and irregular heart-beat.  At this time, there is inadequate 

evidence and testing establishing propene’s carcinogenicity.  Propene has not 

been tested to verify reproductive hazards (NJ DOH, 2004).     

vii. Salicylaldehyde  

Salicylaldehyde is a chemical reagent and can be found in perfumes, 

fumigants, gasoline, flavor ingredients, and in medicinal chemicals (HSDB, 

2003).  A study performed by Sidhu et al. (2005) identified salicylaldehyde as 

a suspected Endocrine Disrupting Chemical (EDC).  The EPA (2015) also 

considers salicylaldehyde an EDC.   

viii. Tetrahydrofuran 

Tetrahydrofuran is used as a reaction medium, reagent, and solvent in 

various operations that involve printing inks, adhesives, lacquers, coatings, 

fuels, pharmaceuticals, perfumes, insecticides, resins, vinyl, polymers, and 

cellophane.  Data on Tetrahydrofuran toxicity is limited.  TOXNET (2015) 
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identified several animal studies that correlated tetrahydrofuran exposure to 

skin and mucous membrane irritation, respiratory tract irritation, liver damage, 

kidney damage, lung damage, and gastro-intestinal tract inflammation.  

Similar to benzyl chloride, the ACGIH also confirmed tetrahydrofuran as an 

animal carcinogen with unknown relevance to humans (HSDB, 2015).       

ix. Triphenylene 

Triphenylene research and studies are rare in nature.  Two mutagenicity 

studies were located and examined for relevance.  Both studies identified 

triphenylene as causing mutagenicity with positive results in the AMES tests 

with and without S9 fraction from rat livers (CCRIS, 1985).  The AMES test 

is used to determine if a chemical can induce mutations in DNA—thus 

establishing a chemical’s mutagenicity (DeStasio, 2015). 

x. Vinyl Acetate  

Vinyl acetate is used in plastics, films, lacquers, food packaging, food 

starches, polyvinyl emulsions, resins, coatings, paints, sealants, construction 

products, carpet backing, chewing gum, tablet coatings, acrylic fibers, air 

sprays, textiles, paper products, and laminates.  A study by Budinsky et al. 

(2013) of vinyl acetate monomers (VAM) identified that VAM exposure 

produced nasal tumors in rats.  According to studies compiled from the 

Hazardous Substances Data Bank (HSDB), there is a lack of evidence 

confirming vinyl acetate as a human carcinogen.  However, vinyl acetate is 

shown to be genotoxic in human cells via in vitro studies and genotoxic to 

animals via in vivo studies; these findings resulted in the ACGIH 
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categorization of vinyl acetate as an animal carcinogen with unknown 

relevance to humans (HSDB, 2011).     
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Table 1: Chemical Information 
Constituent 

Name 
Molecular 
Formula 

Chemical 
Structure 

Known Disease 
Associations 

Mechanism/Mode 
of Action 

 
4-Ethyltoluene 
 

C9H12 

 

Rat: Ataxia  (ChemlDplus) 
Convulsions (ChemlDplus) 
Bronchitis (TOXLINE) 
Pneumonia (TOXLINE) 
Perivascular Lymphoid 
Infiltrations (PLI) 
(TOXLINE) 
 

Sister Chromatid Exchange 
(SCE) 
Gamma-Glutamyl Transferase 
(GGT) 
Lactic Acid Dehydrogenase 
(LDH) 

 
Benzanthrone 
 

C17H10O 

 

Guinea Pigs: Skin 
Sensitization Reactions 
(HSDB) 
Liver Necrosis (HSDB) 
Kidney/Bladder Lesions 
(HSDB) (Sex Unspecified) 
 
 

Lipid Peroxidation 
Oxidative Stress 
Immunotoxin 
Endocrine Disruption (EDC) 

 
Benzyl Chloride 
 

C7H7Cl 

 

Cat: Pulmonary Edema 
(ChemlDplus) 
Corneal Damage 
(ChemlDplus) 
Mice: Respiratory Depression 
(ChemlDplus) 
Rat: Respiratory Depression 
(ChemlDplus) 
Multi Species: Neoplasms  
(HSDB) 

Alkylating Agent 
Lipid Peroxidation 
Chromatid Aberration 
 
 
 

 
n-Heptane 
 

C7H16 

 

Human: CNS Depression 
(HSDB) 
Chemical Pneumonia (HSDB) 
Dermatitis (HSDB) 
Cardiac Sensitizer (HSDB) 
Hallucinations (ChemlDplus) 

Cytochrome P450 
Oxidation 
 
 

 
n-Octane 
 

C8H18 

 

Human:  
Respiratory Irritation (HSDB) 
Skin Delipidization (HSDB) 
 
Mice: CNS Depression 
(HSDB) 

Cytochrome P450 
Alkaline Phosphatase (ALP) 
Lipid Peroxidation 
 

 
 
Propene 
 
 

C3H6 

 

Dog: Cardiac Sensitizer 
(HSDB) 
Human: 
CNS Depression (HSDB) 
Eye/Skin Irritation (HSDB) 
Resp. Irritation (HSDB) 
Mice: Liver Degeneration 
(HSDB) 
Rat: Nasal Cavity Lesions 
(HSDB) 

Hydroxylate Reaction 

 
Salicylaldehyde 
 

C7H6O2 

 

Human:  
Endocrine Disruption 
(Sidhu et al. (2005)) 
 
Rat:  
Skin Irritant (HSDB) 

Enzyme Inhibition 
EDC 
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Tetrahydrofuran 
 

C4H8O 

 

Human: GI Damage (HSDB) 
Resp. Irritation (HSDB) 
CNS Depression (HSDB) 
Skin Irritation (HSDB) 
Eye Irritant (HSDB) 
 
Unknown Species:  
Liver Damage (HSDB) 
Kidney Damage (HSDB) 
Hypotension (HSDB) 
 

Oxidative Stress 
Mitogenic 
Cytochrome P450 
Hepatotoxic Aldehyde 
Oxidation 
 

 
Triphenylene 
 

C18H12 

 

No known disease 
associations found in 
literature, all associations are 
considered suspected disease 
associaitons 
 
Unknown Species:  
Eye Damage (ECHA) 
 
Skin Irritant (Haz-Map) 

No known mechanisms in 
literature 
 

 
Vinyl Acetate 
 

C4H6O2 

 

Human: 
Cardiac Irregularities (HSDB) 
Skin Irritant (HSDB) 
 
Mice:  
 
Multi Species: Oral Cancer  
(HSDB) 
 
Rats: Nasal Cancer (HSDB) 
 
Rabbit:  
Eye Irritant (HSDB) 
 
Unknown Species:  
RP Irritant (HSDB) 
CNS Depression (HSDB) 
GI Tract Tumors (HSDB) 
Uterine Tumors (HSDB) 

SCE 
Chromosome Aberration 
DNA Cross Links 
Cell Proliferation 
Cytotoxic 
Mitotic Inhibition 
Genotoxic 
 

Note: Table does not contain all chemical-disease associations, just the chemical-
disease associations used to test the Brouch Model  
*Chemical Properties obtained from ChemSpider http://www.chemspider.com 
** Mechanism transcribed from Chapter 2
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d. Diseases 

The CTD organizes associated diseases into 27 curated disease categories.  

The 27 disease categories are known as “ancestors.”   Under the “ancestors,” the 

CTD has associated “descendant” disease.  As an example, the “ancestor” disease 

of chemically induced disease has a “descendant” disease of poisoning.  The 

disease categories used in the Brouch MATLAB® ANN training were taken from 

the CTD and given a numerical value—one through 27.  Similarly to the CTD, the 

diseases associated with the testing data were selectively matched to the 27 

disease categories.  Table 2 displays the 27 disease categories used to train the 

Brouch MATLAB® ANN.  Brouch (2014) paired the chemical-disease 

associations for the curated training data set to the numerical disease categories 

found in Table 2.   

Uncurated testing chemical-disease association and numerical disease 

category pairing was accomplished using human and animal, medical surveillance 

and toxicity studies.  The medical surveillance and toxicity study findings listed in 

Table 1 were paired with the disease categories in Table 2 based on the chemical-

disease association’s comparative anatomical location.  The pairing of the 

uncurated testing data to numerical disease categories can be viewed in Appendix 

D.   
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Table 2: Disease Categories 

Disease Type/Name Numerical Disease Category 

Animal Diseases 1 

Bacterial Infections 2 

Cardiovascular Diseases 3 

Congenital, Hereditary, Neonatal Diseases 4 

Digestive System Diseases 5 

Environmental Diseases 6 

Endocrine System Diseases 7 

Eye Diseases 8 

Female Urogenital Disease 9 

Hemic and Lymphatic Diseases 10 

Immune System Diseases 11 

Male Urogenital Diseases 12 

Mental Disorders 13 

Musculoskeletal Diseases  14 

Neoplasms 15 

Nervous System Diseases 16 

Metabolic Diseases 17 

Occupational Diseases 18 

Otorhinolaryngologic Diseases 19 

Parasitic Diseases 20 

Pathological Conditions 21 

Respiratory Diseases 22 

Skin and Connective Tissue Diseases 23 

Stomatognathic Diseases 24 

Substance-Related Disorders 25 

Virus Diseases 26 

Wounds and Injuries 27 
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e. Remaining Input and Output Data 

Before the simulations could be run in MATLAB®, the chemical data and 

parameters had to be formatted to fit the requirements of the MATLAB® ANN.  

The training set of chemicals were added to a column in Microsoft® Excel®, 

followed by each chemical’s molecular weight, number of hydrogen bond donors, 

and number of hydrogen bond acceptors in the corresponding columns.  In order 

to reduce the time that the ANN needed to read the Excel® file, the data was 

copied from Excel® and pasted into a MATLAB® “.m” file.  The “.m” file listed 

the input data into a single line with an alphabetic code separating each input 

parameter.  Table 3 displays the input and output data for the curated chemical 

Acetone along with the “.m” file alphabetical code used to identify the 

parameter’s separation.  The output data for the testing set were then entered into 

the corresponding Excel® file columns.  The output data consisted of the testing 

constituent’s corresponding disease categories taken from the curated data in the 

CTD.  The output data was then copied from Excel® and pasted into the same 

MATLAB® “.m” file as the input data.  
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Table 3: Curated Input and Output Data 

 
Curated Training Data 

 

  

 

Input 
 

Output 
 

Chemical Name  
Molecular 

Weight 
 (UU) 

Hydrogen 
Acceptors 

(VV) 

Hydrogen 
Donors 
(WW) 

 
Disease Category     

    (ZZ) 

 
Acetone 58.08 

 
1 
 

0 
 

9 
 

 
Acetone 58.08 

 
1 
 

0 
 

12 
 

 
Acetone 58.08 

 
1 
 

0 
 

15 
 

 
Acetone 58.08 

 
1 
 

0 
 

16 
 

 
Acetone 58.08 

 
1 
 

0 
 

17 
 

 
Acetone 58.08 

 
1 
 

0 
 

25 
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The number of CTD curated chemical-disease associations determined the number of rows used for each training 

chemical.  Using the CTDs curated chemical-disease associations for acetone; the chemical-disease associations were 

categorized based upon the CTDs 27 disease categories.  As seen in Table 3, Acetone has six chemical-disease 

associations.  Since acetone has six chemical-disease associations, there are six rows containing acetone’s molecular 

weight, number of hydrogen bond acceptors, number of hydrogen donor donors, and the corresponding chemical-disease 

association numerical value.  The same process was used for the testing set.  However, the testing data set disease 

associations were not used as outputs, since the MATLAB® ANN was set to predict the associated diseases as an output.  

An example of the data used for the testing data set can be viewed in Table 4 for Triphenylene.  A copy of the complete 

input and output tables for the training and testing data sets can be found in Appendix A and Appendix B. 
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Table 4: Uncurated Input and Output Data 

 

 
Uncurated Testing Data 

 

  
Input 

 

 
Output 

     

 

Chemical                    
(Synonym)                          
(CAS #)  

 
 
 

MW 
(CC) 

Hydrogen 
Bond 

 
ANN 

 

 
Known 

 

Acceptor 
(DD) 

Donor 
(EE) 

Derived 
Disease 

(GG) 
 

Rounded 
Disease 

(HH) 
 

Disease 
Category 

 (II) 
 

Disease Name  
 
 

 
Triphenylene 
(Isochrysene) 

(217-59-4) 
 

228.29 0 0 4.5 5 8 Eye Disease 

 
Triphenylene 
(Isochrysene) 

(217-59-4) 
228.29 0 0 6 6 23 Skin Disease 
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2. Artificial Neural Network  

ANNs are grouped into two categories: feed-forward and regression.  The Brouch 

MATLAB® ANN is a feed-forward network.  Feed-forward networks are organized 

into layers with connections that flow only in one direction from layer to layer (Jain 

et al., 1996).  The specific type of feed-forward ANN used in the Brouch MATLAB® 

ANN is a Multilayer Preceptor (MLP).  MLPs have three layers: an input layer, a 

hidden layer, and an output layer (Shamisi et al., 2011).  MLPs may have one or more 

hidden layers which allow the ANN to learn complex non-linear functions (Lee and 

Lucas, 2014). 

In order to learn, feed-forward ANNs need to be trained.  Training a feed-forward 

MLP involves back-propagation.  Back-propagation calculates the difference between 

the actual outputs and predicated outputs and is propagated from the output nodes 

backwards to the nodes in the previous layer.  Back-propagation is accomplished to 

improve weights during training.  Per Adrian Shepherd, a good network will classify 

patterns similar to, but not identical to, patterns in the training set (Shepherd, 1999).  

In order to establish well-defined training sets, the number of elements in the input, 

the target, and the output layers must match.  

In order to create a network that can generalize the number of training patterns, 

the training patterns must be compared to the network weights.  If the network weight 

is greater than the number of training patterns, the ANN may become too powerful 

and begin over-fitting.  The number of hidden layers may also affect network 

generalization.  Having too few hidden networks can leave the network unable to 
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learn.  Having too many hidden layers can result in poor generalization.  Lastly, the 

number of training iterations performed can also alter the network.  Having too little 

iteration, the network will not be able to import data from the training set.  In 

contrast, having too many iterations will result in the network over-training.  

In 2014, Brouch developed and programmed a MATLAB® ANN.  The formulas 

were determined by the type of training function specified for the network to use 

during simulation.  The weights and biases were placed on the input data, as the 

network was tested.  After testing the known input and output data with the training 

function formulas, weight, and biases, the network-derived outputs were compared to 

the actual output formulated from relevant literature and research.  

3. Simulations 

Four types of simulations were run through the Brouch MATLAB® ANN: the 

effect of hidden layers on ANN performance; the effect of the TVT ratios on ANN 

performance; the effect of chemical structure on ANN performance; and constituent-

specific ANN-based predictions for uncurated constituent found in burn pit 

emissions.  This section will briefly describe the type of simulation.  Simulation 

results can be seen and are recorded in Chapter 4 of this thesis. 

a. The effect of hidden layers on ANN performance 

Initial simulations included running all uncurated constituent simultaneously 

through the ANN model.  Upon input into the model, the data were divided into 

three subsets: training, validation, and testing (TVT).  The TVT used for the 

initial ANN mode simulations consisted of 70% of the training data, 15% of the 

validation data, and 15% of the testing data.  TVT can also be referenced or 
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written as 70/15/15.  The input into the model was processed through a hidden 

layer, before the output was generated.  Hidden layers consist of hidden neurons 

that are neither in the input layer nor the output layer and can be 

conceptualized/visualized in Figures 1 and 2.  The utilization of additional hidden 

layers can be used to determine if the additional layers would increase processing 

power and system flexibility.  However, additional hidden layers can add 

unwanted or unneeded complexity in the training algorithm.  If there are too many 

hidden layers, there may be more equations than there are free variables resulting 

in the system being over specified, and the ANN becomes incapable of 

generalization.  If the ANN has too few hidden layers, then the lessened amount 

of hidden neurons can prevent the system from properly fitting the input data and 

reduces the robustness of the system.  The initial model simulations were capped 

at five hidden layers to optimize ANN output.  Later, simulations were capped at 

two hidden layers to optimize the run time of the model. 
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Figure 1: Basic ANN Layout  
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Figure 2: Detailed ANN Layout 
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b. The effect of the TVT ratios on ANN performance 

In order to determine the effect of different training, validation, and testing 

(TVT) ratios on ANN performance, three TVT ratios were selected and used to 

run the Brouch ANN: 60/20/20, 70/15/15, and 80/10/10.  The training subset 

represents the percentage of data selected from the “curated training data” that 

was used to train the model.  The first number subset (60, 70, or 80) in the TVT 

ratio represents the percentage of data used to train the model from the training 

set.  Training occurs by pairing inputs with expected outputs, and is used to 

compute the gradient, the network weights, and the networks biases.  While 

training the model, the validation error is monitored to prevent the model from 

over fitting the training data and is derived from the second set of numbers in the 

TVT ratio (20, 15, or 10).  The Brouch ANN uses the uncurated testing data set to 

evaluate the network performance.  The third subset of numbers from the TVT 

ratio is the testing subset (20, 15, or 10).  The testing subset represents the 

percentage of data selected from the uncurated testing data that was used to 

generate the models output or results.   

c. The effect of chemical structure on ANN performance 

Chemicals with similar chemical structure were run through the model at HL 

=2 and all three TVTs.  The three different TVTs used were 60/20/20, 70/15/15, 

and 80/10/10.  The first set of similar structure chemicals (Group 1) included 

chemicals that contained hydrocarbon chains.  The chemicals in Group 1 

included: n-heptane, n-octane, and propene.  The second set of similar-structure 

chemicals (Group 2) included benzene ring structures.  The chemicals in Group 2 
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included: 4-ethyltoluene, benzyl chloride, benzanthrone, salicylaldehyde, and 

triphenylene.  Chemical structure similarities can be seen in Table 1.   

d. Chemical-specific ANN-based predictions for uncurated constituents found 

in burn pit emissions 

Each uncurated constituent was run through the model individually using HL 

=2 and all three TVTs: 60/20/20, 70/15/15, and 80/10/10.        

4. Analysis and Results 

This section will briefly describe how the analysis and results from the 

MATLAB® ANN were processed.  Full analysis and results are recorded in Chapter 4 

of this thesis.  Once all simulations were complete, the output data was written from 

the MATLAB® ANN into a Microsoft® Excel® file for analysis.  While in Microsoft® 

Excel®, the ANN output of predicted disease was plotted/graphed against the known 

associated disease.  Once plotted, Excel® was used to calculate the correlation 

coefficient (R2).  The correlation coefficient indicates the nature and strength of the 

relationship between the Predicted Disease Category and the Actual Disease 

Category.   
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IV. Results and Discussion 

Overview 

The output generated by the Brouch MATLAB® ANN was recorded in a 

Microsoft® Excel® scatter plot.  The scatter plot was used to graphically represent the 

relationship between the ANN predicted disease category plotted on the Y-Axis and the 

known disease category plotted on the X-Axis.  The regression equation and the 

correlation coefficient, or R2, was calculated using Microsoft® Excel®.  The correlation 

coefficient indicates the nature and strength of the relationship between the predicted 

disease category and the known disease category.  Ultimately, precise agreement between 

the ANN-predicted disease category and the known disease category was the goal.  A 

correlation coefficient at, or near, the value of one indicates a positive correlation.  

However, a correlation coefficient at or near the value of one does not indicate that the 

model can accurately predict chemical disease associations.  

The effect of hidden layers on ANN performance 

Figure 3 displays the effect of hidden layers on the ANN performance for nine of 

the ten uncurated constituents found in burn pit emissions.  The uncurated constituent, 

Triphenylene, was excluded from the hidden layer performance modeling due to the 

absence of known chemical-disease associations.  The X-Axis shows the disease category 

and the Y-Axis shows the predicted disease category that was generated by the ANN.  

The diagonal line shown on the graph is the reference for precise agreement between the 

actual and predicted disease categories.  The model output was not in agreement with the 

actual disease categories and was widely scattered, regardless of the number of hidden 

layers.  Numerous incorrect disease associations were observed. When HL =1, there was 
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a misidentification rate of 84% (37 out of 44), including three misidentifications for 

chemicals causing nutritional and metabolic diseases and four misidentifications for 

chemicals causing hemic and lymphatic diseases.  Similar observations were made when 

more than one hidden layer was used.  When HL =2, there was a misidentification rate of 

73% (32 out of 44), including one misidentifications for chemicals causing 

stomatognathic diseases and three misidentifications for chemicals causing parasitic 

diseases.  When HL =3, there was a misidentification rate of 93% (41 out of 44), 

including five misidentifications for chemicals causing bacterial infections and mycoses 

and for misidentifications for chemicals causing musculoskeletal diseases.  When HL =4, 

there was a misidentification rate of 91% (40 out of 44) including five misidentifications 

for chemicals causing animal diseases and four misidentifications for chemicals causing 

environmental disorders.  When HL =5, there was a misidentification rate of 89% (39 out 

of 44), including four misidentifications for chemicals causing immune system diseases 

and two misidentifications for chemicals causing mental disorders.  The regressions of 

each number of hidden layers exhibited coefficients of determination that were 0.1 or less 

and may be viewed in Table 5 with each hidden layers regression equation.  In light of 

the high misidentification rates and the low coefficients of determination, these results 

indicate that the Brouch ANN model lacks the general predictive capability that is needed 

to screen constituents that are found in burn pit emissions. 

To verify consistent model results each HL simulation was run in duplicate.  In 

order to compare the original and duplicate run, the correlation coefficient (R2) for each 

run was calculated.  Using the R-values from the original and duplicate run, the HL z-

score and probability values were calculated (Table 6).  A probability value of < 0.05 
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indicates that the two correlation coefficients for each HL differ significantly.  All 

comparative HL simulations produced probability values in excess of 0.85 indicating that 

the original and duplicate simulations were statistically similar, demonstrating the 

internal consistency and reliability of the Brouch ANN.   

The effect of additional hidden layers on the performance of the ANN resulted in 

the unwanted added complexity in the training algorithm.  During the hidden layer 

addition simulations, the network increased training time, which resulted in the network 

shutting down.  Specifically during the HL =4 simulation, the run time lasted longer than 

24 hours.  Due to this issue, each chemical was run independently at HL =2.  The 

selection of HL =2 maintained simulation run times between 20 and 40 minutes.  
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Figure 3: Original ANN Output 
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Table 5: The effect of the number of hidden layers on ANN performance; Regressions and coefficients of determination 

 
Number of Hidden 

Layers 
 

 
Regression 

Equation 
 

 
Coefficient of  

Determination (R2) 

 
1 

 
y = 0.0016x + 10.787 

 

 
0.000003 

 
2 

 
y = 0.0016x + 13.229 

 

 
0.000003 

 
3 

 
y = 0.001x + 7.9777 

 

 
0.000003 

 
4 

 
y = 0.0021x + 6.5718 

 

 
0.000005 

 
5 

 
y = -0.0256x + 9.5932 

 

 
0.0009 
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Table 6: Determining model reliability using HL simulation comparisons; Regression equations, coefficients of 
determination, correlation coefficients, z-scores, and probability value  

HL Number of 
Simulations 

Regression 
Equation 

Coefficient of 
Determination 

(R2) 

Correlation 
Coefficient 

(R) 

z-Score Probability 
Value 

 
 
1 

 
1 

 
y = 0.0016x + 10.787 

 
0.000003 

 
0.0017 

 
 

0.145 

 
 

0.88  
2 

 
y = 0.0286x + 6.4541 

 
0.1459 

 
-0.0303 

 
 
2 

 
1 

 
y = 0.0016x + 13.229 

 
0.000003 

 
0.0017 

 
 

0.191 

 
 

0.85  
2 

 
y = 0.3548x + 7.8632 

 
0.1439 

 
-0.0404 

 
 
3 

 
1 

 
y = 0.001x + 7.9777 

 
0.000003 

 
0.0017 

 
 

0.124 

 
 

0.90  
2 

 
y = 0.2139x + 4.5353 

 
0.1435 

 
-0.0257 

 
 
4 

 
1 

 
y = 0.0021x + 6.5718 

 
0.000005 

 
0.0023 

 
 

0.164 

 
 

0.87  
2 

 
y = 0.2303x + 4.1325 

 
0.1435 

 
-0.0339 

 
 
5 

 
1 

 
y = -0.0256x + 9.5932 

 
0.0009 

 
-0.0294 

 
 

0.117 

 
 

0.91  
2 

 
y = 0.3263x + 4.0263 

 
0.0022 

 
-0.0553 
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The effect of the TVT ratios on ANN performance 

Figures 7 – 11 in Appendix A display the TVT ratio comparisons for nine of the 

ten uncurated constituents found in burn pit emissions for HL = 1 through HL =5.  The 

uncurated constituent, Triphenylene, was excluded from the TVT performance modeling 

due to the absence of known chemical-disease associations.  The X-Axis displays the 

disease category and the Y-Axis displays the predicted disease category that was 

generated by the ANN.  The diagonal line shown on the graph is the reference for precise 

agreement between the actual and predicted disease categories.  The model output for all 

TVT ratio comparisons was not in agreement with the actual disease categories and was 

widely scattered, regardless of the number of hidden layers.  Numerous incorrect disease 

associations were observed.   

The first TVT comparison evaluated the 60/20/20, 70/15/15, and 80/10/10 TVT 

ratios at HL =1.  When the 60/20/20 TVT ratio was used there was a misidentification 

rate of 100% (44 out of 44).  When HL=1 and the 60/20/20 TTV was used the model 

predicted only negative disease category values.  When the 70/15/15 TVT ratio was used 

there was a misidentification rate of 84% (37 out of 44), including three 

misidentifications for chemicals causing nutritional and metabolic disorders and two 

misidentifications for chemicals causing occupational diseases.  When the 80/10/10 TVT 

ratio was used there was a misidentification rate of 84% (37 out of 44), including two 

misidentifications for chemicals causing parasitic diseases and three misidentifications 

for chemicals causing immune system diseases.  The TVT comparisons for HL =1 can be 
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viewed in Figure 7 of Appendix A.  Similar observations were made when more than one 

hidden layer was used.   

The second TVT comparison evaluated the 60/20/20, 70/15/15, and 80/10/10 

TVT ratios at HL =2.  When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (44 out of 44).  When HL=2 and the 60/20/20 TTV was 

used, the model predicted only negative disease category values.  When the 70/15/15 

TVT ratio was used, there was a misidentification rate of 77% (34 out of 44), including 

two misidentifications for chemicals causing pathological conditions and two 

misidentifications for chemicals causing nutritional and metabolic diseases.  When the 

80/10/10 TVT ratio was used there was a misidentification rate of 75% (33 out of 44), 

including two misidentifications for chemicals causing substance-related disorders and 

one misidentifications for chemicals causing virus diseases.  The TVT comparisons for 

HL =2 can be viewed in Figure 8 of Appendix A.   

The third TVT comparison evaluated the 60/20/20, 70/15/15, and 80/10/10 TVT 

ratios at HL =3.  When the 60/20/20 TVT ratio was used there was a misidentification 

rate of 100% (44 out of 44).  When HL=3 and the 60/20/20 TTV was used the model 

predicted only negative disease category values.  When the 70/15/15 TVT ratio was used 

there was a misidentification rate of 86% (38 out of 44), including four misidentifications 

for chemicals causing musculoskeletal diseases and two misidentifications for chemicals 

causing neoplasms.  When the 80/10/10 TVT ratio was used there was a misidentification 

rate of 84% (37 out of 44), including five misidentifications for chemicals causing 

bacterial infections and mycoses and three misidentifications for chemicals causing 
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mental disorders.  The TVT comparisons for HL =3 can be viewed in Figure 9 of 

Appendix A.     

The fourth TVT comparison evaluated the 60/20/20, 70/15/15, and 80/10/10 TVT 

ratios at HL =4.  When the 60/20/20 TVT ratio was used there was a misidentification 

rate of 96% (42 out of 44), including four misidentifications for chemicals causing 

bacterial infections and mycoses.  When the 70/15/15 TVT ratio was used there was a 

misidentification rate of 87% (39 out of 44), including four misidentifications for 

chemicals causing immune diseases and three misidentifications for chemicals causing 

animal diseases.  When the 80/10/10 TVT ratio was used there was a misidentification 

rate of 86% (38 out of 44), including three misidentifications for chemicals causing 

hemic and lymphatic diseases and four misidentifications for chemicals causing mental 

disorders.  The TVT comparisons for HL =4 can be viewed in Figure 10 of Appendix A.       

The final TVT comparison evaluated the 60/20/20, 70/15/15, and 80/10/10 TVT 

ratios at HL =5.  When the 60/20/20 TVT ratio was used there was a misidentification 

rate of 98% (43 out of 44).  When HL=3 and the 60/20/20 TTV was used the model 

predicted 29 negative disease category values.  When the 70/15/15 TVT ratio was used 

there was a misidentification rate of 91% (40 out of 44), including four misidentifications 

for chemicals causing bacterial infections and mycoses and two misidentifications for 

chemicals causing parasitic diseases.  When the 80/10/10 TVT ratio was used there was a 

misidentification rate of 91% (40 out of 44) including four misidentifications for 

chemicals causing environmental disorders and one misidentification for chemicals 

causing substance-related disorders.  The TVT comparisons for HL =5 can be viewed in 

Figure 11 of Appendix A.         
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The regressions for each TVT ratio exhibited coefficients of determination that 

were 0.1 or less and are displayed in Table 7.  Considering the high misidentification 

rates and the low coefficients of determination, the TVT comparison results indicate that 

the TVT ratio does not impact the accuracy of the Brouch ANN.  To further demonstrate 

this point, the bar graph in Figure 4 displays all TVT comparisons for each of the hidden 

layers tested, where the X-Axis displays the results of each hidden layers TVT 

comparisons, and the Y-Axis displays the coefficient of determination (R2).   
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Table 7: The effect of TVT ratios on ANN performance; Regressions and misidentification ratios 

 
 

HL 

Regression Equation Misidentification Ratio 

 
60/20/20 

 
70/15/15 

 
80/10/10 

 
60/20/20 

 
70/15/15 

 
80/10/10 

 
1 

 
y = 0.0123x + 4.908 

 
y = -0.026 + 11.059 

 
y = -0.0266x + 11.227 

 
44:44 

 
37:44 

 
37:44 

 
2 

 
y = -5E-05x – 0.0086 

 
y = -0.0495x + 13.854 

 
y = -0.0384x + 13.874 

 
44:44 

 
34:44 

 
33:44 

 
3 

 
y = 0.0293x – 9.2427 

 
y = -0.0184x + 8.107 

 
y = -0.028x + 8.2673 

 
44:44 

 
38:44 

 
37:44 

 
4 

 
y = -0.0521x + 2.8549 

 
y = -0.042x + 6.5502 

 
y = -0.021x + 7.9868 

 
42:44 

 
39:44 

 
38:44 

 
5 

 
y = -0.021x – 0.8091 

 
y = -0.0485x + 9.8617 

 
y = -0.0468x + 10.02 

 
43:44 

 
40:44 

 
40:44 
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Figure 4: TVT Comparison across all HLs 
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The effect of chemical structure on ANN performance 

Figures 5 and 6 show the effects of chemical structure on the performance of the 

ANN for eight of the ten uncurated constituents found in burn pit emissions at HL =2.   

The eight uncurated constituents tested contained either benzene rings or hydrocarbon 

chains.  The two excluded uncurated constituents; tetrahydrofuran and vinyl acetate, were 

excluded from the similar structure performance modeling due to their chemical 

structure.  The X-Axis displays the known disease category and the Y-Axis displays the 

predicted disease category that was generated by the ANN.  The diagonal line shown on 

the graph is the reference for precise agreement between the actual and predicted disease 

categories.  The model output was not in agreement with the actual disease categories and 

was widely scattered, regardless of the TVT ratio.  Numerous incorrect disease 

associations were observed.  

Group 1 – Chemical Structures containing Hydrocarbon Chains 

The chemicals in Group 1 contained hydrocarbon chains and included the 

following chemicals: n-heptane, n-octane, and propene.  Group 1 chemicals were 

evaluated at the 60/20/20, 70/15/15, and 80/10/10 TVT ratios at HL =2.  

Comparing the hydrocarbon chained chemicals from the Group 1 data set to the 

Curated Training Data set; the Curated Training Data set did not contain 

chemicals that were structurally related to the Group 1 data set.   

When Group 1 chemicals were modeled at the 60/20/20 TVT ratio there 

was a misidentification rate of 100% (15 out of 15), including four 

misidentifications for chemicals causing bacterial infections and mycoses and 
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three misidentifications for chemicals causing endocrine system diseases.  When 

the Group 1 chemicals were modeled at the 70/15/15 TVT ratio there was a 

misidentification rate of 73% (11 out of 15), including two misidentifications for 

chemicals causing female urogenital diseases and pregnancy complications.  

When compared to the original ANN output at the 70/15/15 TVT ratio for HL =2 

simulation captured in Figure 3, the two simulations share similar 

misidentification ratios.  The chemicals in Group 1 at the 70/15/15 for HL =2 had 

a misidentification rate of 73% (11 out of 15), while the original ANN output at 

the 70/15/15 TVT for HL =2 had a misidentification rate of 73% (32 out of 44).  

When Group 1 chemicals were modeled at the 80/10/10 TVT ratio there was a 

misidentification rate of 80% (12 out of 15), including two misidentifications for 

chemicals causing environmental disorders and two misidentifications for 

chemicals causing hemic and lymphatic diseases.  The Group 1 TVT comparisons 

at HL =2 can be viewed in Figure 5.   

Group 2 – Chemical Structures containing Benzene Rings 

The chemicals in Group 2 contained benzene rings and included the 

following chemicals: 4-ethyltoluene, benzyl chloride, benzanthrone, 

salicylaldehyde, and triphenylene.  Group 2 chemicals were evaluated at the 

60/20/20, 70/15/15, and 80/10/10 TVT ratios at HL =2.  Comparing the benzene 

ring containing chemicals from the Group 2 data set to the curated training data 

set, 55% (41 out of 75), chemicals from the Curated Training Data contained 

benzene ring structures.     
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When group 2 chemicals were modeled at the 60/20/20 TVT ratio there 

was a misidentification rate of 86% (12 out of 14), including two 

misidentifications for chemicals causing congenital, hereditary, neonatal diseases 

and abnormalities and three misidentifications for chemicals causing immune 

system diseases.  When Group 2 chemicals were modeled at the 70/15/15 TVT 

ratio there was a misidentification rate of 100% (14 out of 14).  The 70/15/15 

TVT ratio predicted negative disease category values less than one.  When 

compared to the original ANN output at the 70/15/15 TVT ratio for HL =2 

simulation captured in Figure 3, the two simulations did not share similar 

misidentification ratios.  The chemicals in Group 2 at the 70/15/15 for HL =2 had 

a misidentification rate of 100% (14 out of 14), while the original ANN output at 

the 70/15/15 TVT for HL =2 had a misidentification rate of 73% (32 out of 44).    

When Group 2 chemicals were modeled at the 80/10/10 TVT ratio there was a 

misidentification rate of 86% (12 out of 14) including four misidentifications for 

chemicals causing immune system diseases and three misidentifications for 

chemicals causing eye diseases.  The Group 2 TVT comparisons at HL =2 can be 

viewed in Figure 6.   

The regression equations and coefficients of determination for Groups 1 

and 2 are displayed in Table 8.  The regressions for each groups TVT ratio 

displayed coefficients of determination that were 0.1 or less.  Considering the 

high misidentification rates and the low coefficients of determination, the similar 

chemical structure comparisons indicate that a chemical structure similarity does 

not impact the accuracy of the Brouch ANN.  At this time, it is recommended that 
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the curated training data set be expanded to include chemicals that contain 

hydrocarbon chains.  
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Figure 5: Similar Chemical Structure - Group 1: Hydrocarbon Chains 
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Figure 6: Similar Chemical Structure - Group 2: Benzene Rings 
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Table 8: The effect of Chemical Structure on ANN performance; Regressions and misidentification ratios 

 
 

Group  

Regression Equation Misidentification Ratio 

 
60/20/20 

 
70/15/15 

 
80/10/10 

 
60/20/20 

 
70/15/15 

 
80/10/10 

 
1 

 
y = 0.018x + 2.9561 

 
y = 0.1643x + 7.6949 

 
y = 0.2238x + 4.8685 

 
15:15 

 
11:15 

 
12:15 

 
2 

 
y = 0.1313x + 7.2329 

 
y = -0.0008x + 0.1094 

 
y = 0.0472x + 8.1226 

 
12:14 

 
14:14 

 
12:14 
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Chemical-specific ANN-based predictions for uncurated constituents found in burn 
pit emissions 

Misidentification Ratios 

Figures 12 through 21 in Appendix B display the effects of individual 

constituents on the ANN performance for the ten uncurated constituents found in 

burn pit emissions at HL =2.  All uncurated constituents were evaluated at the 

60/20/20, 70/15/15, and 80/10/10 TVT ratios.  The X-Axis displays the known 

disease category and the Y-Axis displays the predicted disease category that was 

generated by the ANN.  The diagonal line shown on the graph is the reference for 

precise agreement between the actual and predicted disease categories.  The 

model output was not in agreement with the actual disease categories and was 

widely scattered, regardless of the TVT ratio.  Numerous incorrect disease 

associations were observed.  Table 9 displays the uncurated constituents, disease 

associations, mechanism of disease, and the misidentification ratios for the 

individual uncurated constituent simulations.   

4-Ethyltoluene 
When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (3 out of 3), to include the misidentification 

of bacterial infections, endocrine system, and metabolic diseases.  When 

the 70/15/15 TVT ratio was used there was a misidentification rate of 

100% (3 out of 3), to include the misidentification of female urogenital 

diseases, and neoplasms.  When the 80/10/10 TVT ratio was used there 

was a misidentification rate of 100% (3 out of 3), to include the 
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misidentification of digestive system, endocrine system, and eye diseases.  

The TVT comparisons for 4-ethyltoluene can be viewed in Figure 12 of 

Appendix B.   

Benzanthrone 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (4 out of 4), to include the misidentification 

of immune system diseases and three model predictions for negative 

disease category values.  When the 70/15/15 TVT ratio was used there 

was a misidentification rate of 75% (3 out of 4), to include the 

misidentification of digestive system disease, and environmental 

disorders.  When the 80/10/10 TVT ratio was used there was a 

misidentification rate of 100% (4 out of 4), to include the misidentification 

of eye, immune system, and musculoskeletal diseases.  The TVT 

comparisons for benzanthrone can be viewed in Figure 13 of Appendix B.   

Benzyl Chloride  

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (3 out of 3), to include the misidentification 

of immune system diseases and two model predictions for negative disease 

category values.  When the 70/15/15 TVT ratio was used there was a 

misidentification rate of 67% (2 out of 3), to include the misidentification 

of environmental disorders, and digestive system diseases.  When the 

80/10/10 TVT ratio was used there was a misidentification rate of 67% (2 

out of 3), to include the misidentification of immune system and 
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musculoskeletal diseases.  The TVT comparisons for benzyl chloride can 

be viewed in Figure 14 of Appendix B.   

n-Heptane   

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 80% (4 out of 5), to include the misidentification 

of neoplasms, immune system, and musculoskeletal diseases.  When the 

70/15/15 TVT ratio was used there was a misidentification rate of 80% (4 

out of 5), to include the misidentification of environmental, endocrine 

system, and eye diseases.  When the 80/10/10 TVT ratio was used there 

was a misidentification rate of 80% (4 out of 5), to include the 

misidentification of cardiovascular, congenital, hereditary, neonatal, 

environmental, hemic, and lymphatic diseases.  The TVT comparisons for 

n-heptane can be viewed in Figure 15 of Appendix B.   

n-Octane 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (3 out of 3), to include the misidentification 

of congenital, hereditary, neonatal, animal, and cardiovascular diseases.  

When the 70/15/15 TVT ratio was used there was a misidentification rate 

of 100% (3 out of 3), to include the misidentification of animal diseases, 

bacterial infections, and one model prediction for negative disease 

category values.  When the 80/10/10 TVT ratio was used there was a 

misidentification rate of 100% (3 out of 3), to include the misidentification 
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of neoplasms, endocrine system, and immune system diseases.  The TVT 

comparisons for n-octane can be viewed in Figure 16 of Appendix B.   

Propene 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 71% (5 out of 7), to include the misidentification 

of congenital, hereditary, neonatal, endocrine system, and environmental 

diseases.  The 60/20/20 TVT ratio also produced the misidentification of 

bacterial infections, and one model prediction for negative disease 

category values.  When the 70/15/15 TVT ratio was used there was a 

misidentification rate of 71% (5 out of 7), to include the misidentification 

of animal, immune system, environmental, female urogenital, hemic, and 

lymphatic diseases.  When the 80/10/10 TVT ratio was used there was a 

misidentification rate of 71% (5 out of 7), to include the misidentification 

of animal, endocrine system, female urogenital and musculoskeletal 

diseases.  The TVT comparisons for propene can be viewed in Figure 17 

of Appendix B.   

Salicylaldehyde 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (2 out of 2), to include the misidentification 

of environmental diseases, and one model prediction for negative disease 

category values.  When the 70/15/15 TVT ratio was used there was a 

misidentification rate of 100% (2 out of 2), to include the misidentification 

of immune system diseases.  When the 80/10/10 TVT ratio was used there 
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was a misidentification rate of 100% (2 out of 2), to include the 

misidentification of environmental diseases.  The TVT comparisons for 

salicylaldehyde can be viewed in Figure 18 of Appendix B.   

Tetrahydrofuran 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 75% (6 out of 8), to include the misidentification 

of substance-related disorders, endocrine system, and metabolic diseases.  

When the 70/15/15 TVT ratio was used there was a misidentification rate 

of 50% (4 out of 8), to include the misidentification of neoplasms, 

substance-related disorders, and metabolic diseases.  When the 80/10/10 

TVT ratio was used there was a misidentification rate of 63% (5 out of 8), 

to include the misidentification of bacterial infections, endocrine system, 

eye, and musculoskeletal diseases.  The TVT comparisons for 

tetrahydrofuran can be viewed in Figure 19 of Appendix B.   

Triphenylene 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 100% (2 out of 2), to include the misidentification 

of immune system diseases, and one model prediction for negative disease 

category values.  When the 70/15/15 TVT ratio was used there was a 

misidentification rate of 100% (2 out of 2), to include the misidentification 

of digestive system, and environmental diseases.  When the 80/10/10 TVT 

ratio was used there was a misidentification rate of 100% (2 out of 2), to 

include the misidentification of immune system, and eye diseases.  The 
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TVT comparisons for triphenylene can be viewed in Figure 20 of 

Appendix B.   

Vinyl Acetate 

When the 60/20/20 TVT ratio was used there was a 

misidentification rate of 89% (8 out of 9), to include the misidentification 

of bacterial infections, neoplasms, pathological conditions, congenital 

diseases, hereditary diseases, neonatal disease, and one model prediction 

for negative disease category values.  When the 70/15/15 TVT ratio was 

used there was a misidentification rate of 89% (8 out of 9), to include the 

misidentification of bacterial infections, environmental diseases, one half-

value model prediction, and three model predictions for negative disease 

category values.  When the 80/10/10 TVT ratio was used there was a 

misidentification rate of 89% (8 out of 9), to include the misidentification 

of animal, endocrine system, immune system, and metabolic diseases, 

along with the prediction of two negative disease category values.  The 

TVT comparisons for vinyl acetate can be viewed in Figure 21 of 

Appendix B.   
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Table 9: Constituent specific ANN-based predictions for uncurated chemicals found in burn pit emissions: Disease 
causation, mechanisms, and misidentification ratios 

Constituents Disease  
Causation 

Mechanisms 
Of Action 

Misidentification Ratio 
60/20/20 70/15/15 80/10/10 

4-ethyltoluene 16, 22, 23 Sister Chromatid Exchange (SCE), Gamma-Glutamyl 
Transferase (GGT), and Lactic Acid Dehydrogenase 
(LDH) 

3:3 3:3 3:3 

Benzanthrone 5, 9, 12, 23 Lipid Peroxidation, Oxidative Stress, Endocrine Disruption 
(EDC), Immunotoxin 4:4 3:4 4:4 

Benzyl Chloride 5, 22, 23 Alkylating Agent, Lipid Peroxidation, Chromatid 
Aberration 
 

3:3 2:3 2:3 

n-Heptane 3, 5, 16, 22, 23 Cytochrome P450, Oxidation 
 4:5 4:5 4:5 

n-Octane 16, 22, 23 Cytochrome P450, Alkaline Phosphatase (ALP), Lipid 
Peroxidation 
 

3:3 3:3 3:3 

Propene 3, 5, 8, 16, 19, 22, 
23 

Hydroxylate Reaction 5:7 5:7 5:7 

Salicylaldehyde 7, 23 Enzyme Inhibition, EDC 2:2 2:2 2:2 
Tetrahydrofuran 3, 5, 8, 9, 12, 16, 

22, 23 
Oxidative Stress, Mitogenic, Cytochrome P450, 
Hepatotoxic Aldehyde 6:9 4:9 5:9 

Triphenylene 8, 23 No known mechanisms in literature 2:2 2:2 2:2 
Vinyl Acetate 3, 5, 8, 9, 16, 19, 

22, 23, 24 
SCE, Chromosome Aberration, DNA Cross Links, Cell 
Proliferation, Cytotoxic, Mitotic Inhibition, Genotoxic 
 

8:9 8:9 8:9 
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Data Gaps 

Chemical-Disease-Mechanism Associations 

The chemical-disease associations used to train the Brouch ANN 

model were selected due to their known associations described in the 

CTD.  However, the chemical-disease associations selected to test the 

Brouch ANN model were derived from suspected disease-associations due 

to the limited nature of available literature and research.  The high 

misidentification ratios indicate that more data is needed for ANN training 

with uncurated constituents.   

 Chemical Mixtures 
 

Due to the limited data on chemical mixtures and their side effects, 

the Brouch ANN was not trained to predict disease for chemical mixtures.  

As it stands, the ten uncurated burn pit constituents used to test the Brouch 

ANN enter the body in the form of a mixture.  However, the burn pit 

constituents were modeled as individual chemical components due to the 

trained ability of the model.  With the understanding that each chemical 

maintains its own toxic effect inside the body, the chemical combination 

present in mixtures causes the mechanisms and health predictions to 

become increasingly complicated.  The combination of mechanisms and 

toxic effects may result in the additive, synergistic, or potentiating effects.  

Additive effects occur when chemicals have similar toxic effects, produce 

a combined effect that is equal to the sum of the chemicals separate 
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effects.  Synergistic effects occur when the chemical combination 

produces a health effect that is greater than the sum of the individual 

chemical effects.  Potentiating effects occur when an effect of one 

chemical is increased by the exposure to a second chemical.  Data and 

chemical testing is limited on these types of chemical interactions 

resulting in the inability to model the health effects of chemical mixtures.  

Expanding the training data set to include chemical mixtures may help 

overcome this limitation.    

Further Testing 

Further testing is recommended for the burn pit constituents with 

R2 values greater than 0.8.  The constituents with an R2 value greater than 

0.8 include: 4-ethyltoluene, benzanthrone, n-heptane, n-octane, 

salicylaldehyde, and triphenylene.  The six constituents identified above 

can be viewed in Table 10.  These six constituents should be prioritized to 

help further develop predictive ANN models for human health force 

support.  

The American Chemistry Council’s (ACC’s) 2011 Chemical 

Prioritization Screening Approach (ACC, 2011) was adopted to prioritize 

the six uncurated burn pit emission constituents.  In order to rank and 

assign a priority to a constituent, the ACC recommends identifying the 

following: the constituent’s toxicity, carcinogenicity, endocrine disruptor 

status, and available data.  These items were used to rank the health 

hazards for the six uncurated burn pit constituents and can be seen in 
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Table 10.  The persistency and bioaccumulation variable for each 

constituent were also used as indicators of exposure.  The persistency and 

bioaccumulation criteria from the ACC approach, recommended 

distinguishing between persistent and non-persistent chemicals using the 

following criteria: volatile chemicals are maintaining a vapor pressure > 

1000 Pa.  Persistent versus non-persistent chemicals were differentiated 

using a chemical half-life in air.   

A constituent was not considered persistent if the air half-life was 

< 2 days.  The air half-life was derived from Scheringer et al. (2006).   

Scheringer et al. (2006) purposed the air half-life of <2 days as a screening 

criterion for chemical degradability in air.  The selection of an air half-life 

of 2 days was based, in part, on the distance traveled by a chemical in the 

air.  Scheringer et al. (2006) used the AOPWINTM estimation software to 

estimate the air half-life of organic chemicals that do not have measured 

rate constants.  AOPWINTM estimates chemical atmospheric oxidation 

potential, and is currently used for the European Union’s registration, 

evaluation and authorization of chemicals (REACH) program.  The air 

half-life for the six uncurated constituents was derived using the 

AOPWINTM model obtained from the Environmental Protection Agency’s 

EPIsuiteTM available on the ChemSpider website.  The biodegradability 

for the six uncurated constituents was derived using the BIOWINTM model 

obtained from the Environmental Protection Agency’s EPIsuiteTM 

available on the ChemSpider website.  BIOWINTM estimates the chemical 
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biodegradability.  The ACC in the 2011 Chemical Prioritization Screening 

Approach (ACC, 2011) suggests the use of the AOPWINTM and 

BIOWINTM models.   

To assess for bio-concentration, the bi- concentration factor (BCF), 

from the ACD/Labs Percepta Platform—Software Modules was used.  The 

ACD/Labs Percepta Platform—Software Modules predict 

physicochemical, ADME, and toxicity properties from chemical structure. 

ACD/BCF was accessed through the ChemSpider website.  In order to 

classify constituents as a bio-concentrator, a chemical must produce a bio-

concentration factor (BCF) > 5000.  The biodegradable, half-life, 

persistency, and bio-concentration factors for the six uncurated 

constituents can be viewed in Table 10.     

Based on the above recommendations, the six uncurated 

constituents were grouped with regard to persistence and bio-

concentration according to the factors in Table 11.  As demonstrated in 

Table 11, each constituent was assigned a numerical score based upon the 

constituent’s overall ranking.  The uncurated constituent persistency and bio-

concentration scores can be seen in Table 14.  The six uncurated 

chemicals were then grouped with regard to human health hazards and the 

factors found in Table 12.  As demonstrated in Table 12, each constituent 

was assigned a numerical score based upon the constituent’s ranking.  The 

human health hazards scores can be seen in Table 14.  The persistence and 

bio-concentration scores and the human health hazards score were summed 
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to derive an overall final score or value.  These values were then separated 

into categories from low to high and given a priority level.  The final score 

and priority level for the six uncurated burn pit constituents can be seen in 

Table 14. 

According to the priority level identified in Table 14, salicylaldehyde 

and triphenylene should be the first of the six constituents to require 

additional sampling and testing.  The second group to obtain additional 

sampling and evaluation are benzanthrone and n-octane.  The last group to 

attain further assessment is 4-ethyltoluene and n-heptane.  
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Table 10: Uncurated constituent human health hazard classification criteria 
Constituent Adapted from ACC Human Health Hazard Classification Criteria R2 

Toxicity 
 

Carcinogen  Insufficient  
Chemical 

Information  

Biodegradable  
 

½ 
life 

(days) 

Bio-
concentration 

Factor 
(BCF) 

Persistency 
VP 
(Pa) 

 
 
 
 

EDC 

60/20/20 70/15/15 80/10/10 
Acute 

 
Chronic 

 

4-ethyltoluene --- --- --- Yes No 4.9 No (451) No (0.67) No 0.10 
 

0.85 
 

0.96 
 

Benzanthrone --- Yes  --- Yes No - No (2350) No (0.67) Yes 0.75* 
 

0.84 
 

0.88 
 

n-Heptane Yes Yes No Not tested for 
Carcinogenicity 

Yes  5.5 No (1502) No 
(0.00003) 

No 0.94 
 

0.98 
 

0.70 
 

n-Octane Yes Yes No Yes Yes 6.4 No (3825) Yes (6133) No 0.02* 
 

1.00* 
 

0.96 
 

Salicylaldehyde --- --- --- Yes Yes - No (10 – 11) Yes (1880) Yes 1.00* 
 

1.00 
 

1.00 
 

Triphenylene  --- --- Possible 
Mutagen 

Yes No 344 Yes (13349) No (79) No 1.00* 
 

1.00 
 

1.00 
 

Note: Properties obtained from ChemSpider http://www.chemspider.com 
(---) Denotes no information available 
(-) Denotes incompatibility with BIOWIN Model  
(*) Denotes negative linearity 
 
 
 
 
 
 



www.manaraa.com

          

94 

Table 11: Persistence and bio-concentration exposure ranking 

Persistence and Bio-concentration Ranking Persistence and Bio-concentration 
Score 

Not Persistent and No Bio-concentration Low 1 
Persistent and No Bio-concentration 

OR 
Bio-concentration and Not Persistent 

Medium 
  

3  

Persistent and Bio-concentration High 5 

 
Table 12: Human health hazard ranking 

Human Health  Ranking Health Ranking Score 

Non-Carcinogen with Acute Toxicity Medium 2 
Non-Carcinogen with Chronic Toxicity Medium 2 
Non-Carcinogen w/ Acute & Chronic 

Toxicity 
Medium -High 3 

Insufficient Data to Classify High 4 
Carcinogen No ranking add 1 to final score 1 

EDC Chemical  No ranking add 1 to final score 1 

 
Table 13: Integration of exposure rankings 

Combined Score  Exposure Ranking  Priority 

2 – 4 Low Low 
5 – 7 Medium Medium 
8 – 10 High High 
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Table 14: Uncurated constituent proposed prioritization  

 
Constituent 

Adapted from ACC Human Health Hazard Classification Criteria 
Persistence and Bio-concentration  Human Health Carcinogen EDC Final Score Priority 

4-ethyltoluene 1 4 - - 5 Low 
Benzanthrone 1 4 - 1 6 Med 
n-Heptane 1 3 - - 4 Low 
n-Octane 3 3 - - 6 Med 
Salicylaldehyde 3 4 - 1 8 High 
Triphenylene  3 4 1 - 8 High 
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V.  Conclusions and Recommendations 

Conclusions and Recommendations 

1. Misidentification rates of 73% or greater were observed for ANN simulations 

when the hidden layer size varied between 1 and 5.  The ANN model, as 

currently constructed and trained, does not have the predictive capability 

needed to screen constituents associated with burn pit emissions.  The number 

of hidden layers had little effect on the performance of the model.  Additional 

data is needed to train the model. 

2. Misidentification rates of 75% or greater were observed for ANN simulations 

when the TVT ratios ranged from 60/20/20 to 80/10/10 for the nine uncurated 

test constituents.  As currently constructed and trained, the ANN model does 

not have the predictive capability needed to screen burn pit emission 

constituents. The TVT ratios had little effect on the performance of the model, 

and are likely due to the need for additional training data. 

3. ANN-based screening of similar structured constituents containing benzene 

rings and hydrocarbon chains produced misidentification rates of 73% or 

greater, and R2 values of 0.0762 and lower.  The misidentification rates for 

similar structure constituents were lower than those misidentification rates 

observed for the original test set, while the R2 values for similar structure 

constituents were higher than the R2 values observed for the original test set. 

4. Further testing is recommended for several constituents with R2 values greater 

than 0.8.  The constituents with an R2 value greater than 0.8 include 4-

ethyltoluene, benzanthrone, n-heptane, n-octane, salicylaldehyde, and 
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triphenylene.  These constituents have been prioritized to help further develop 

predictive ANN models for human health force support.  Salicylaldehyde and 

triphenylene should be the first constituents to acquire additional sampling 

and testing, followed by benzanthrone and n-octane, and 4-ethyltoluene and n-

heptane.   

5. Evaluation of alternative disease categorization approaches is needed to 

determine the impact of disease categorization of the model’s performance.   

6. Reclassifying the training and testing data from categorical variable to 

continuous variables is needed to validate the chemical-diseases mapping 

provided by the Brouch model.  
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Appendix A 

Figure 7: TVT Comparison HL =1 
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Figure 8: TVT Comparison HL =2 
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Figure 9: TVT Comparison HL =3 
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Figure 10: TVT Comparison HL =4 
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Figure 11: TVT Comparison HL =5 
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Appendix B  

Figure 12: 4-Ethyltoluene 
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Figure 14: Benzyl Chloride 
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Figure 15: n-Heptane 
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Figure 16: n-Octane 
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Figure 17: Propene 
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Figure 18: Salicylaldehyde 
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Figure 19: Tetrahydrofuran 
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Figure 20: Triphenylene 
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Figure 21: Vinyl Acetate 
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Appendix C 

Table 15: ANN Training Data 

Chemical Name  Molecular Weight 
(UU) 

Hydrogen Acceptors 
 (VV) 

Hydrogen Donors  
(WW) 

Disease Category  
(ZZ) 

Acetone 58.08 1 0 9 
58.08 1 0 12 
58.08 1 0 15 
58.08 1 0 16 
58.08 1 0 17 
58.08 1 0 25 

Aciclovir 225.21 8 4 2 
225.21 8 4 3 
225.21 8 4 4 
225.21 8 4 5 
225.21 8 4 8 
225.21 8 4 9 
225.21 8 4 11 
225.21 8 4 12 
225.21 8 4 13 
225.21 8 4 15 
225.21 8 4 16 
225.21 8 4 17 
225.21 8 4 19 
225.21 8 4 20 
225.21 8 4 21 
225.21 8 4 23 
225.21 8 4 24 
225.21 8 4 25 
225.21 8 4 26 

Alprazolam 308.77 4 0 3 
308.77 4 0 4 
308.77 4 0 5 
308.77 4 0 7 
308.77 4 0 8 
308.77 4 0 9 
308.77 4 0 11 
308.77 4 0 12 
308.77 4 0 13 
308.77 4 0 16 
308.77 4 0 21 
308.77 4 0 23 
308.77 4 0 25 

Ammonium Sulfate 132.14 4 2 3 
132.14 4 2 17 
132.14 4 2 22 

 Aspirin 180.16 4 1 2 
180.16 4 1 3 
180.16 4 1 4 
180.16 4 1 5 
180.16 4 1 6 
180.16 4 1 7 
180.16 4 1 8 
180.16 4 1 9 
180.16 4 1 10 
180.16 4 1 11 
180.16 4 1 12 
180.16 4 1 13 
180.16 4 1 14 
180.16 4 1 15 
180.16 4 1 16 
180.16 4 1 17 



www.manaraa.com

 

 

Aspirin 
(continued) 

180.16 4 1 19 
180.16 4 1 21 
180.16 4 1 22 
180.16 4 1 23 
180.16 4 1 24 
180.16 4 1 25 
180.16 4 1 26 
180.16 4 1 27 

Atenolol 266.34 5 4 3 
266.34 5 4 4 
266.34 5 4 5 
266.34 5 4 7 
266.34 5 4 9 
266.34 5 4 11 
266.34 5 4 12 
266.34 5 4 13 
266.34 5 4 14 
266.34 5 4 15 
266.34 5 4 16 
266.34 5 4 17 
266.34 5 4 21 
266.34 5 4 23 
266.34 5 4 24 
266.34 5 4 25 

Azithromycin 749.00 14 5 2 
749.00 14 5 3 
749.00 14 5 5 
749.00 14 5 7 
749.00 14 5 8 
749.00 14 5 9 
749.00 14 5 10 
749.00 14 5 11 
749.00 14 5 12 
749.00 14 5 13 
749.00 14 5 14 
749.00 14 5 15 
749.00 14 5 16 
749.00 14 5 17 
749.00 14 5 19 
749.00 14 5 21 
749.00 14 5 22 
749.00 14 5 23 
749.00 14 5 24 
749.00 14 5 24 
749.00 14 5 26 

Benzene 78.12 0 0 1 
78.12 0 0 3 
78.12 0 0 4 
78.12 0 0 5 
78.12 0 0 7 
78.12 0 0 9 
78.12 0 0 10 
78.12 0 0 11 
78.12 0 0 14 
78.12 0 0 15 
78.12 0 0 16 
78.12 0 0 17 
78.12 0 0 18 
78.12 0 0 21 
78.12 0 0 22 
78.12 0 0 23 
78.12 0 0 25 
78.12 0 0 27 

Benzyl-penicillin 334.40 6 2 1 
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Benzyl-penicillin 
(continued) 

334.40 6 2 2 
334.40 6 2 3 
334.40 6 2 4 
334.40 6 2 5 
334.40 6 2 7 
334.40 6 2 8 
334.40 6 2 9 
334.40 6 2 10 
334.40 6 2 11 
334.40 6 2 12 
334.40 6 2 14 
334.40 6 2 16 
334.40 6 2 17 
334.40 6 2 19 
334.40 6 2 20 
334.40 6 2 21 
334.40 6 2 22 
334.40 6 2 23 
334.40 6 2 24 
334.40 6 2 25 
334.40 6 2 26 

Caffeine 194.19 6 0 1 
194.19 6 0 2 
194.19 6 0 3 
194.19 6 0 4 
194.19 6 0 5 
194.19 6 0 7 
194.19 6 0 8 
194.19 6 0 9 
194.19 6 0 10 
194.19 6 0 11 
194.19 6 0 12 
194.19 6 0 13 
194.19 6 0 14 
194.19 6 0 15 
194.19 6 0 16 
194.19 6 0 17 
194.19 6 0 19 
194.19 6 0 21 
194.19 6 0 22 
194.19 6 0 23 
194.19 6 0 25 
194.19 6 0 27 

Candoxatril 515.65 8 2 3 
515.65 8 2 7 
515.65 8 2 16 
515.65 8 2 17 

Carbamazepine 236.28 3 2 1 
236.28 3 2 3 
236.28 3 2 4 
236.28 3 2 5 
236.28 3 2 7 
236.28 3 2 8 
236.28 3 2 9 
236.28 3 2 10 
236.28 3 2 11 
236.28 3 2 12 
236.28 3 2 13 
236.28 3 2 14 
236.28 3 2 15 
236.28 3 2 16 
236.28 3 2 17 
236.28 3 2 19 
236.28 3 2 21 
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Carbamazepine 
(continued) 

236.28 3 2 22 
236.28 3 2 23 
236.28 3 2 24 
236.28 3 2 25 
236.28 3 2 26 

Caustic Soda 40.00 1 1 1 
40.00 1 1 5 
40.00 1 1 19 
40.00 1 1 22 
40.00 1 1 27 

Chloramphenicol 323.14 7 3 2 
323.14 7 3 3 
323.14 7 3 5 
323.14 7 3 8 
323.14 7 3 9 
323.14 7 3 10 
323.14 7 3 11 
323.14 7 3 12 
323.14 7 3 14 
323.14 7 3 15 
323.14 7 3 16 
323.14 7 3 17 
323.14 7 3 19 
323.14 7 3 21 
323.14 7 3 22 
323.14 7 3 23 
323.14 7 3 25 

Cimetidine 252.34 6 3 2 
252.34 6 3 3 
252.34 6 3 4 
252.34 6 3 5 
252.34 6 3 7 
252.34 6 3 8 
252.34 6 3 9 
252.34 6 3 11 
252.34 6 3 12 
252.34 6 3 13 
252.34 6 3 14 
252.34 6 3 15 
252.34 6 3 16 
252.34 6 3 17 
252.34 6 3 19 
252.34 6 3 21 
252.34 6 3 22 
252.34 6 3 23 
252.34 6 3 24 
252.34 6 3 25 
252.34 6 3 26 
252.34 6 3 27 

Clonidine 230.10 3 2 3 
230.10 3 2 4 
230.10 3 2 5 
230.10 3 2 7 
230.10 3 2 8 
230.10 3 2 9 
230.10 3 2 11 
230.10 3 2 12 
230.10 3 2 13 
230.10 3 2 14 
230.10 3 2 16 
230.10 3 2 17 
230.10 3 2 19 
230.10 3 2 21 
230.10 3 2 22 



www.manaraa.com

 

 

Clonidine 
(continued) 

230.10 3 2 23 
230.10 3 2 24 
230.10 3 2 25 

Copper Sulfate 159.61 4 0 4 
159.61 4 0 5 
159.61 4 0 9 
159.61 4 0 12 
159.61 4 0 13 
159.61 4 0 14 
159.61 4 0 16 
159.61 4 0 17 
159.61 4 0 19 
159.61 4 0 21 
159.61 4 0 22 
159.61 4 0 25 

Cyclosporine 1202.64 23 5 1 
1202.64 23 5 2 
1202.64 23 5 3 
1202.64 23 5 4 
1202.64 23 5 5 
1202.64 23 5 7 
1202.64 23 5 8 
1202.64 23 5 9 
1202.64 23 5 10 
1202.64 23 5 11 
1202.64 23 5 12 
1202.64 23 5 13 
1202.64 23 5 14 
1202.64 23 5 15 
1202.64 23 5 16 
1202.64 23 5 17 
1202.64 23 5 19 
1202.64 23 5 20 
1202.64 23 5 21 
1202.64 23 5 22 
1202.64 23 5 23 
1202.64 23 5 25 
1202.64 23 5 26 

Desipramine 266.39 2 1 2 
266.39 2 1 3 
266.39 2 1 4 
266.39 2 1 5 
266.39 2 1 7 
266.39 2 1 8 
266.39 2 1 9 
266.39 2 1 11 
266.39 2 1 12 
266.39 2 1 13 
266.39 2 1 15 
266.39 2 1 16 
266.39 2 1 17 
266.39 2 1 21 
266.39 2 1 22 
266.39 2 1 23 
266.39 2 1 25 

Dexamethasone 392.47 5 3 2 
392.47 5 3 3 
392.47 5 3 4 
392.47 5 3 5 
392.47 5 3 7 
392.47 5 3 8 
392.47 5 3 9 
392.47 5 3 10 
392.47 5 3 11 
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Dexamethasone  
(continued) 

392.47 5 3 12 
392.47 5 3 13 
392.47 5 3 14 
392.47 5 3 15 
392.47 5 3 16 
392.47 5 3 17 
392.47 5 3 19 
392.47 5 3 20 
392.47 5 3 21 
392.47 5 3 22 
392.47 5 3 23 
392.47 5 3 24 
392.47 5 3 25 
392.47 5 3 26 
392.47 5 3 27 

Diazepam 284.75 3 0 2 
284.75 3 0 2 
284.75 3 0 4 
284.75 3 0 5 
284.75 3 0 8 
284.75 3 0 9 
284.75 3 0 11 
284.75 3 0 12 
284.75 3 0 13 
284.75 3 0 14 
284.75 3 0 15 
284.75 3 0 16 
284.75 3 0 17 
284.75 3 0 19 
284.75 3 0 21 
284.75 3 0 22 
284.75 3 0 23 
284.75 3 0 24 
284.75 3 0 25 
284.75 3 0 27 

Diclofenac 296.15 3 2 2 
296.15 3 2 3 
296.15 3 2 4 
296.15 3 2 5 
296.15 3 2 7 
296.15 3 2 8 
296.15 3 2 9 
296.15 3 2 11 
296.15 3 2 12 
296.15 3 2 13 
296.15 3 2 14 
296.15 3 2 15 
296.15 3 2 16 
296.15 3 2 17 
296.15 3 2 19 
296.15 3 2 21 
296.15 3 2 22 
296.15 3 2 23 
296.15 3 2 25 
296.15 3 2 26 
296.15 3 2 27 

Diltiazem-HCl 414.53 6 0 3 
414.53 6 0 4 
414.53 6 0 4 
414.53 6 0 7 
414.53 6 0 8 
414.53 6 0 9 
414.53 6 0 10 
414.53 6 0 11 
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Diltiazem-HCl 
(continued) 

414.53 6 0 12 
414.53 6 0 13 
414.53 6 0 14 
414.53 6 0 15 
414.53 6 0 16 
414.53 6 0 17 
414.53 6 0 21 
414.53 6 0 23 
414.53 6 0 25 

Doxorubicin 543.53 12 7 1 
543.53 12 7 2 
543.53 12 7 3 
543.53 12 7 4 
543.53 12 7 5 
543.53 12 7 7 
543.53 12 7 8 
543.53 12 7 9 
543.53 12 7 10 
543.53 12 7 11 
543.53 12 7 12 
543.53 12 7 13 
543.53 12 7 14 
543.53 12 7 15 
543.53 12 7 16 
543.53 12 7 17 
543.53 12 7 19 
543.53 12 7 21 
543.53 12 7 22 
543.53 12 7 23 
543.53 12 7 24 
543.53 12 7 25 
543.53 12 7 26 
543.53 12 7 27 

Enalaprilat 376.46 7 2 3 
376.46 7 2 5 
376.46 7 2 21 

Erythromycin 733.95 14 5 1 
733.95 14 5 2 
733.95 14 5 3 
733.95 14 5 4 
733.95 14 5 5 
733.95 14 5 7 
733.95 14 5 8 
733.95 14 5 9 
733.95 14 5 10 
733.95 14 5 11 
733.95 14 5 12 
733.95 14 5 13 
733.95 14 5 14 
733.95 14 5 15 
733.95 14 5 16 
733.95 14 5 17 
733.95 14 5 19 
733.95 14 5 20 
733.95 14 5 21 
733.95 14 5 22 
733.95 14 5 23 
733.95 14 5 24 
733.95 14 5 25 
733.95 14 5 26 

Ethylene Glycol 62.07 2 2 4 
62.07 2 2 5 
62.07 2 2 9 
62.07 2 2 12 
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Ethylene Glycol 
(continued) 

62.07 2 2 14 
62.07 2 2 16 
62.07 2 2 25 

Famotidine 337.45 9 8 3 
337.45 9 8 4 
337.45 9 8 5 
337.45 9 8 7 
337.45 9 8 9 
337.45 9 8 11 
337.45 9 8 12 
337.45 9 8 13 
337.45 9 8 14 
337.45 9 8 15 
337.45 9 8 16 
337.45 9 8 17 
337.45 9 8 21 
337.45 9 8 22 
337.45 9 8 23 
337.45 9 8 25 
337.45 9 8 26 
337.45 9 8 27 

Felodipine 384.26 5 1 3 
384.26 5 1 9 
384.26 5 1 12 
384.26 5 1 16 
384.26 5 1 21 
384.26 5 1 23 
384.26 5 1 24 

Ferric Chloride 162.20 0 0 3 
162.20 0 0 5 
162.20 0 0 9 
162.20 0 0 11 
162.20 0 0 12 
162.20 0 0 16 
162.20 0 0 21 
162.20 0 0 25 
162.20 0 0 27 

Fluorouracil 130.08 4 2 2 
130.08 4 2 3 
130.08 4 2 4 
130.08 4 2 5 
130.08 4 2 7 
130.08 4 2 8 
130.08 4 2 9 
130.08 4 2 10 
130.08 4 2 11 
130.08 4 2 12 
130.08 4 2 13 
130.08 4 2 14 
130.08 4 2 15 
130.08 4 2 16 
130.08 4 2 17 
130.08 4 2 19 
130.08 4 2 21 
130.08 4 2 22 
130.08 4 2 23 
130.08 4 2 24 
130.08 4 2 25 
130.08 4 2 26 
130.08 4 2 27 

Flurbiprofen 244.27 2 1 3 
244.27 2 1 4 
244.27 2 1 5 
244.27 2 1 8 
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Flurbiprofen 
(continued) 

244.27 2 1 9 
244.27 2 1 11 
244.27 2 1 12 
244.27 2 1 13 
244.27 2 1 14 
244.27 2 1 15 
244.27 2 1 16 
244.27 2 1 17 
244.27 2 1 19 
244.27 2 1 21 
244.27 2 1 22 
244.27 2 1 23 
244.27 2 1 24 
244.27 2 1 25 

Formaldehyde 30.03 1 0 1 
30.03 1 0 1 
30.03 1 0 2 
30.03 1 0 3 
30.03 1 0 4 
30.03 1 0 5 
30.03 1 0 7 
30.03 1 0 8 
30.03 1 0 9 
30.03 1 0 11 
30.03 1 0 12 
30.03 1 0 13 
30.03 1 0 14 
30.03 1 0 15 
30.03 1 0 16 
30.03 1 0 18 
30.03 1 0 19 
30.03 1 0 20 
30.03 1 0 21 
30.03 1 0 22 
30.03 1 0 23 
30.03 1 0 24 
30.03 1 0 25 
30.03 1 0 26 

Furosemide 330.75 7 4 3 
330.75 7 4 4 
330.75 7 4 5 
330.75 7 4 7 
330.75 7 4 9 
330.75 7 4 10 
330.75 7 4 11 
330.75 7 4 12 
330.75 7 4 13 
330.75 7 4 14 
330.75 7 4 15 
330.75 7 4 16 
330.75 7 4 17 
330.75 7 4 19 
330.75 7 4 21 
330.75 7 4 22 
330.75 7 4 23 
330.75 7 4 25 

Gabapentin 30.03 1 0 27 
171.24 3 2 3 
171.24 3 2 4 
171.24 3 2 5 
171.24 3 2 7 
171.24 3 2 8 
171.24 3 2 9 
171.24 3 2 12 
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Gabapentin 
(continued) 

171.24 3 2 13 
171.24 3 2 15 
171.24 3 2 16 
171.24 3 2 17 
171.24 3 2 21 
171.24 3 2 23 
171.24 3 2 24 

Glycerol 92.09 3 3 1 
92.09 3 3 3 
92.09 3 3 7 
92.09 3 3 8 
92.09 3 3 9 
92.09 3 3 12 
92.09 3 3 14 
92.09 3 3 16 
92.09 3 3 17 
92.09 3 3 21 

Hydrochloric Acid 36.46 0 1 2 
36.46 0 1 3 
36.46 0 1 4 
36.46 0 1 5 
36.46 0 1 7 
36.46 0 1 9 
36.46 0 1 11 
36.46 0 1 12 
36.46 0 1 13 
36.46 0 1 14 
36.46 0 1 15 
36.46 0 1 16 
36.46 0 1 17 
36.46 0 1 18 
36.46 0 1 19 
36.46 0 1 20 
36.46 0 1 21 
36.46 0 1 22 
36.46 0 1 23 
36.46 0 1 24 
36.46 0 1 25 
36.46 0 1 27 

Hydrochlorothiazide 297.74 7 4 3 
297.74 7 4 4 
297.74 7 4 5 
297.74 7 4 7 
297.74 7 4 9 
297.74 7 4 11 
297.74 7 4 12 
297.74 7 4 13 
297.74 7 4 14 
297.74 7 4 16 
297.74 7 4 17 
297.74 7 4 21 
297.74 7 4 22 
297.74 7 4 23 
297.74 7 4 24 
297.74 7 4 25 

Hydrofluoric Acid 20.01 1 1 5 
20.01 1 1 9 
20.01 1 1 12 
20.01 1 1 13 
20.01 1 1 14 
20.01 1 1 16 
20.01 1 1 17 
20.01 1 1 21 
20.01 1 1 22 
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Hydrofluoric Acid 
(continued) 

20.01 1 1 24 
20.01 1 1 25 
20.01 1 1 27 

Ibuprofen 206.29 2 1 2 
206.29 2 1 3 
206.29 2 1 4 
206.29 2 1 5 
206.29 2 1 7 
206.29 2 1 8 
206.29 2 1 9 
206.29 2 1 10 
206.29 2 1 11 
206.29 2 1 12 
206.29 2 1 13 
206.29 2 1 14 
206.29 2 1 15 
206.29 2 1 16 
206.29 2 1 17 
206.29 2 1 19 
206.29 2 1 21 
206.29 2 1 22 
206.29 2 1 23 
206.29 2 1 24 
206.29 2 1 25 
206.29 2 1 26 

Imipramine 280.42 2 0 3 
280.42 2 0 4 
280.42 2 0 5 
280.42 2 0 7 
280.42 2 0 8 
280.42 2 0 9 
280.42 2 0 11 
280.42 2 0 12 
280.42 2 0 13 
280.42 2 0 14 
280.42 2 0 15 
280.42 2 0 16 
280.42 2 0 17 
280.42 2 0 19 
280.42 2 0 21 
280.42 2 0 22 
280.42 2 0 23 
280.42 2 0 24 
280.42 2 0 25 

Isopropyl Alcohol 60.10 1 1 2 
Itraconazole 705.65 12 0 2 

705.65 12 0 3 
705.65 12 0 4 
705.65 12 0 5 
705.65 12 0 7 
705.65 12 0 9 
705.65 12 0 11 
705.65 12 0 12 
705.65 12 0 13 
705.65 12 0 14 
705.65 12 0 15 
705.65 12 0 16 
705.65 12 0 17 
705.65 12 0 19 
705.65 12 0 20 
705.65 12 0 21 
705.65 12 0 22 
705.65 12 0 23 
705.65 12 0 25 
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Ketoconazole 380.92 1 0 1 
380.92 1 0 2 
380.92 1 0 3 
380.92 1 0 4 
380.92 1 0 5 
380.92 1 0 7 
380.92 1 0 8 
380.92 1 0 9 
380.92 1 0 11 
380.92 1 0 12 
380.92 1 0 13 
380.92 1 0 14 
380.92 1 0 15 
380.92 1 0 16 
380.92 1 0 17 
380.92 1 0 20 
380.92 1 0 21 
380.92 1 0 22 
380.92 1 0 23 
380.92 1 0 24 
380.92 1 0 25 
380.92 1 0 27 

Ketoprofen 254.29 3 1 3 
254.29 3 1 4 
254.29 3 1 5 
254.29 3 1 9 
254.29 3 1 11 
254.29 3 1 12 
254.29 3 1 13 
254.29 3 1 14 
254.29 3 1 16 
254.29 3 1 21 
254.29 3 1 22 
254.29 3 1 23 
254.29 3 1 25 
254.29 3 1 27 

Labetalol-HCl 328.42 5 5 2 
328.42 5 5 3 
328.42 5 5 4 
328.42 5 5 4 
328.42 5 5 5 
328.42 5 5 7 
328.42 5 5 9 
328.42 5 5 11 
328.42 5 5 12 
328.42 5 5 13 
328.42 5 5 14 
328.42 5 5 15 
328.42 5 5 16 
328.42 5 5 17 
328.42 5 5 21 
328.42 5 5 22 
328.42 5 5 23 
328.42 5 5 25 

Lisinopril 405.50 8 5 3 
405.50 8 5 4 
405.50 8 5 5 
405.50 8 5 7 
405.50 8 5 8 
405.50 8 5 9 
405.50 8 5 11 
405.50 8 5 12 
405.50 8 5 13 
405.50 8 5 14 
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Lisinopril 
(continued) 

405.50 8 5 16 
405.50 8 5 17 
405.50 8 5 21 
405.50 8 5 22 
405.50 8 5 23 
405.50 8 5 24 
405.50 8 5 25 

Magnesium Sulfate 120.37 4 0 2 
120.37 4 0 3 
120.37 4 0 4 
120.37 4 0 5 
120.37 4 0 8 
120.37 4 0 9 
120.37 4 0 11 
120.37 4 0 12 
120.37 4 0 13 
120.37 4 0 14 
120.37 4 0 16 
120.37 4 0 17 
120.37 4 0 21 
120.37 4 0 22 
120.37 4 0 25 
120.37 4 0 27 

Mannitol 182.18 6 6 3 
182.18 6 6 5 
182.18 6 6 7 
182.18 6 6 8 
182.18 6 6 9 
182.18 6 6 11 
182.18 6 6 12 
182.18 6 6 14 
182.18 6 6 15 
182.18 6 6 16 
182.18 6 6 17 
182.18 6 6 21 
182.18 6 6 22 
182.18 6 6 23 
182.18 6 6 24 
182.18 6 6 25 
182.18 6 6 26 
182.18 6 6 27 

Methotrexate 454.45 13 7 2 
454.45 13 7 3 
454.45 13 7 4 
454.45 13 7 4 
454.45 13 7 5 
454.45 13 7 7 
454.45 13 7 8 
454.45 13 7 9 
454.45 13 7 10 
454.45 13 7 11 
454.45 13 7 12 
454.45 13 7 13 
454.45 13 7 14 
454.45 13 7 15 
454.45 13 7 16 
454.45 13 7 17 
454.45 13 7 19 
454.45 13 7 21 
454.45 13 7 22 
454.45 13 7 23 
454.45 13 7 24 
454.45 13 7 25 
454.45 13 7 26 
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Methotrexate (continued) 454.45 13 7 27 
Metoprolol-tartrate 267.37 4 2 3 

267.37 4 2 4 
267.37 4 2 5 
267.37 4 2 7 
267.37 4 2 8 
267.37 4 2 9 
267.37 4 2 11 
267.37 4 2 12 
267.37 4 2 13 
267.37 4 2 14 
267.37 4 2 15 
267.37 4 2 16 
267.37 4 2 17 
267.37 4 2 21 
267.37 4 2 22 
267.37 4 2 23 
267.37 4 2 24 
267.37 4 2 25 
267.37 4 2 27 

Nadolol 309.41 5 4 3 
309.41 5 4 5 
309.41 5 4 7 
309.41 5 4 11 
309.41 5 4 13 
309.41 5 4 16 
309.41 5 4 21 
309.41 5 4 23 
309.41 5 4 24 
309.41 5 4 25 

Naloxone 327.38 5 2 2 
327.38 5 2 3 
327.38 5 2 4 
327.38 5 2 5 
327.38 5 2 7 
327.38 5 2 8 
327.38 5 2 9 
327.38 5 2 10 
327.38 5 2 11 
327.38 5 2 12 
327.38 5 2 13 
327.38 5 2 14 
327.38 5 2 15 
327.38 5 2 16 
327.38 5 2 17 
327.38 5 2 19 
327.38 5 2 21 
327.38 5 2 22 
327.38 5 2 23 
327.38 5 2 24 
327.38 5 2 25 
327.38 5 2 27 

Naproxen-sodium 230.27 3 1 2 
230.27 3 1 3 
230.27 3 1 4 
230.27 3 1 5 
230.27 3 1 7 
230.27 3 1 9 
230.27 3 1 11 
230.27 3 1 12 
230.27 3 1 13 
230.27 3 1 14 
230.27 3 1 16 
230.27 3 1 17 
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Naproxen-sodium 
(continued) 

230.27 3 1 19 
230.27 3 1 21 
230.27 3 1 22 
230.27 3 1 23 
230.27 3 1 24 
230.27 3 1 25 
230.27 3 1 26 
230.27 3 1 27 

Nortriptylene-HCl 263.39 1 1 3 
263.39 1 1 4 
263.39 1 1 5 
263.39 1 1 8 
263.39 1 1 9 
263.39 1 1 12 
263.39 1 1 13 
263.39 1 1 16 
263.39 1 1 17 
263.39 1 1 19 
263.39 1 1 21 
263.39 1 1 22 
263.39 1 1 24 
263.39 1 1 25 
263.39 1 1 27 

Omeprazole 267.25 9 2 2 
267.25 9 2 3 
267.25 9 2 4 
267.25 9 2 5 
267.25 9 2 7 
267.25 9 2 8 
267.25 9 2 9 
267.25 9 2 11 
267.25 9 2 12 
267.25 9 2 13 
267.25 9 2 14 
267.25 9 2 15 
267.25 9 2 16 
267.25 9 2 17 
267.25 9 2 19 
267.25 9 2 20 
267.25 9 2 21 
267.25 9 2 22 
267.25 9 2 23 
267.25 9 2 24 
267.25 9 2 25 

Phenytoin 451.49 10 2 3 
451.49 10 2 4 
451.49 10 2 5 
451.49 10 2 7 
451.49 10 2 8 
451.49 10 2 9 
451.49 10 2 10 
451.49 10 2 11 
451.49 10 2 12 
451.49 10 2 13 
451.49 10 2 14 
451.49 10 2 15 
451.49 10 2 16 
451.49 10 2 17 
451.49 10 2 19 
451.49 10 2 21 
451.49 10 2 22 
451.49 10 2 23 
451.49 10 2 24 
451.49 10 2 25 
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Phenytoin 
(continued) 

451.49 10 2 26 
451.49 10 2 27 

Piroxicam 331.35 7 2 3 
331.35 7 2 4 
331.35 7 2 5 
331.35 7 2 8 
331.35 7 2 9 
331.35 7 2 11 
331.35 7 2 12 
331.35 7 2 14 
331.35 7 2 15 
331.35 7 2 16 
331.35 7 2 17 
331.35 7 2 19 
331.35 7 2 21 
331.35 7 2 22 
331.35 7 2 23 
331.35 7 2 25 
331.35 7 2 26 
331.35 7 2 27 

Potassium Bromide 119.00 1 0 16 
Potassium Permangante 158.03 4 0 5 

Prazosin 383.41 9 2 3 
383.41 9 2 4 
383.41 9 2 5 
383.41 9 2 7 
383.41 9 2 8 
383.41 9 2 9 
383.41 9 2 11 
383.41 9 2 12 
383.41 9 2 13 
383.41 9 2 14 
383.41 9 2 15 
383.41 9 2 16 
383.41 9 2 17 
383.41 9 2 21 
383.41 9 2 23 
383.41 9 2 25 

Propranolol-HCl 259.35 3 2 3 
259.35 3 2 4 
259.35 3 2 5 
259.35 3 2 7 
259.35 3 2 8 
259.35 3 2 9 
259.35 3 2 11 
259.35 3 2 12 
259.35 3 2 13 
259.35 3 2 14 
259.35 3 2 15 
259.35 3 2 16 
259.35 3 2 17 
259.35 3 2 19 
259.35 3 2 21 
259.35 3 2 22 
259.35 3 2 23 
259.35 3 2 24 
259.35 3 2 25 
259.35 3 2 27 

Quinidine 324.43 4 1 3 
324.43 4 1 4 
324.43 4 1 5 
324.43 4 1 8 
324.43 4 1 9 
324.43 4 1 10 
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Quinidine 
(continued) 

324.43 4 1 11 
324.43 4 1 12 
324.43 4 1 13 
324.43 4 1 14 
324.43 4 1 16 
324.43 4 1 17 
324.43 4 1 19 
324.43 4 1 20 
324.43 4 1 21 
324.43 4 1 22 
324.43 4 1 23 
324.43 4 1 25 

Ranitidine-HCl 314.41 7 2 2 
314.41 7 2 3 
314.41 7 2 3 
314.41 7 2 5 
314.41 7 2 7 
314.41 7 2 8 
314.41 7 2 9 
314.41 7 2 11 
314.41 7 2 12 
314.41 7 2 13 
314.41 7 2 14 
314.41 7 2 15 
314.41 7 2 16 
314.41 7 2 17 
314.41 7 2 19 
314.41 7 2 21 
314.41 7 2 22 
314.41 7 2 23 
314.41 7 2 24 
314.41 7 2 25 
314.41 7 2 26 
314.41 7 2 27 

Silver Nitrate 169.87 3 0 11 
Sodium Thiosulfate 158.11 4 0 9 

158.11 4 0 12 
158.11 4 0 16 
158.11 4 0 17 
158.11 4 0 19 
158.11 4 0 25 

Tenidap 320.76 5 2 9 
320.76 5 2 11 
320.76 5 2 12 
320.76 5 2 14 
320.76 5 2 23 

Terfenadine 471.69 3 2 3 
471.69 3 2 4 
471.69 3 2 5 
471.69 3 2 9 
471.69 3 2 11 
471.69 3 2 12 
471.69 3 2 14 
471.69 3 2 15 
471.69 3 2 16 
471.69 3 2 17 
471.69 3 2 19 
471.69 3 2 21 
471.69 3 2 22 
471.69 3 2 23 
471.69 3 2 25 

Testosterone 288.43 2 1 1 
288.43 2 1 3 
288.43 2 1 4 
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Testosterone 
(continued) 

288.43 2 1 5 
288.43 2 1 7 
288.43 2 1 9 
288.43 2 1 10 
288.43 2 1 11 
288.43 2 1 12 
288.43 2 1 13 
288.43 2 1 15 
288.43 2 1 16 
288.43 2 1 17 
288.43 2 1 19 
288.43 2 1 20 
288.43 2 1 21 
288.43 2 1 22 
288.43 2 1 23 
288.43 2 1 25 
288.43 2 1 26 
288.43 2 1 27 

Trovafloxacin 416.36 7 3 2 
416.36 7 3 3 
416.36 7 3 5 
416.36 7 3 9 
416.36 7 3 12 
416.36 7 3 14 
416.36 7 3 16 
416.36 7 3 21 
416.36 7 3 25 

Valproic-acid 144.22 2 1 1 
144.22 2 1 3 
144.22 2 1 4 
144.22 2 1 5 
144.22 2 1 7 
144.22 2 1 8 
144.22 2 1 9 
144.22 2 1 10 
144.22 2 1 11 
144.22 2 1 12 
144.22 2 1 13 
144.22 2 1 14 
144.22 2 1 15 
144.22 2 1 16 
144.22 2 1 17 
144.22 2 1 19 
144.22 2 1 21 
144.22 2 1 22 
144.22 2 1 23 
144.22 2 1 24 
144.22 2 1 25 
144.22 2 1 27 

Vinblastine 811.00 13 3 2 
811.00 13 3 3 
811.00 13 3 4 
811.00 13 3 5 
811.00 13 3 7 
811.00 13 3 8 
811.00 13 3 9 
811.00 13 3 10 
811.00 13 3 11 
811.00 13 3 12 
811.00 13 3 13 
811.00 13 3 14 
811.00 13 3 15 
811.00 13 3 16 
811.00 13 3 17 



www.manaraa.com

 

 

Vinblastine 
(continued) 

811.00 13 3 19 
811.00 13 3 21 
811.00 13 3 22 
811.00 13 3 23 
811.00 13 3 24 
811.00 13 3 25 
811.00 13 3 26 

Zinc Chloride 136.29 0 0 5 
136.29 0 0 13 
136.29 0 0 15 
136.29 0 0 21 
136.29 0 0 25 

Ziprasidone 412.95 5 1 3 
412.95 5 1 4 
412.95 5 1 5 
412.95 5 1 7 
412.95 5 1 11 
412.95 5 1 13 
412.95 5 1 14 
412.95 5 1 16 
412.95 5 1 19 
412.95 5 1 21 
412.95 5 1 22 
412.95 5 1 23 
412.95 5 1 25 
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Appendix D 

Table 16: ANN Testing Data 

Chemical 
Name  

Molecular 
Weight 

(CC) 

Hydrogen 
Acceptors 

(DD) 

Hydrogen 
Donors 

(EE) 

ANN 
Derived 
Disease 

(60/20/20)                   

ANN  
Rounded 
Disease 

(60/20/20) 

ANN 
Derived 
Disease 

(70/15/15)                   

ANN  
Rounded 
Disease 

(70/15/15) 

ANN 
Derived 
Disease   

(80/10/10)                 

ANN  
Rounded 
Disease 

(80/10/10)  

Known 
Disease 

Category 
 (II) 

4-Ethyltoluene 
(622-96-8) 

120.19 0 0 7.09 7 8.92 9 4.966 5 16 
120.19 0 0 2.35 5 11.89 12 6.62 7 22 
120.19 0 0 17.43 17 14.87 15 8.27 8 23 

Benzanthrone 
(82-05-3) 

230.26 1 0 10.56 11 4.5 5 8.11 8 5 
230.26 1 0 -2.21 -2 6 6 10.81 11 9 
230.26 1 0 -2.67 -3 7.5 8 13.52 14 12 
230.26 1 0 -2.64 -3 8 8 14.42 14 23 

Salicylaldehyde 
(90-02-8) 

122.12 2 1 6.37 6 8.5 9 6.4 6 7 
122.12 2 1 -5.76 -6 11.33 11 9.46 9 23 

Benzyl Chloride                         
(100-44-7) 

156.58 0 0 10.56 11 4.5 5 8.12 8 8 
156.58 0 0 -2.21 -2 6 6 10.83 11 15 
156.58 0 0 -2.67 -3 7.5 8 13.54 14 22 

n-Heptane                             
(142-82-5) 

100.20 0 0 3.35 3 4.5 5 5.36 5 3 
100.20 0 0 10.54 11 5.9 6 7.14 7 5 
100.20 0 0 11.27 11 7.3 7 8.93 9 16 
100.20 0 0 13.68 14 7.77 8 9.52 10 22 
100.20 0 0 15.14 15 8.24 8 10.12 10 23 

n-Octane                             
(Octane) 

(111-65-9) 

114.22 0 0 4.19 4 2.24 2 7.32 7 16 
114.22 0 0 0.60 1 0.51 1 11.1 11 22 
114.22 0 0 3.36 3 -1.22 0 14.85 15 23 

Propene 
(115-07-1) 

42.07 0 0 5.88 6 5.66 6 4.85 5 3 
42.07 0 0 7.22 7 7.55 8 6.47 6 5 
42.07 0 0 3.98 4 9.44 9 8.09 8 8 
42.07 0 0 15.84 16 10.07 10 8.63 9 16 
42.07 0 0 13.37 13 10.7 11 9.17 9 19 
42.07 0 0 18.61 19 15.73 16 13.48 13 22 
42.07 0 0 -0.02 -0.02 1.26 1 1.08 1 23 

Tetrahydrofuran                      
(109-99-9) 

72.10 1 0 7.09 7 8.92 9 4.98 5 3 
72.10 1 0 2.36 2 11.9 12 6.65 7 5 
72.10 1 0 17.43 17 14.87 15 8.31 8 8 
72.10 1 0 12.55 13 15.86 16 8.86 9 9 
72.10 1 0 8.55 9 16.86 17 9.42 9 12 
72.10 1 0 24.66 25 24.79 25 13.85 14 16 
72.10 1 0 0.64 1 1.98 2 1.1 1 22 
72.10 1 0 2.91 3 2.97 3 1.66 2 23 

Triphenylene            
(217-59-4) 

228.29 0 0 10.55 11 4.5 5 8.13 8 8 
228.29 0 0 -2.21 -2 6 6 10.84 11 23 

Vinyl Acetate 
(108-05-4) 

86.08 1 0 4.19 4 0.07 0 6.31 6 3 
86.08 1 0 0.60 1 0.09 0 8.42 8 5 
86.08 1 0 3.36 3 0.11 0 10.53 11 8 
86.08 1 0 2.27 2 0.11 0 11.23 11 9 
86.08 1 0 15.24 15 0.12 0 11.93 12 16 
86.08 1 0 20.61 21 0.17 0 17.55 18 19 
86.08 1 0 1.79 2 0.02 0 1.4 1 22 
86.08 1 0 -0.34 -0.3 0.03 0 2.1 2 23 
86.08 1 0 1.66 2 0.04 0 2.8 3 24 
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